These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 38637640)
1. The first chromosome-level genome of the stag beetle Dorcus hopei Saunders, 1854 (Coleoptera: Lucanidae). Li X; Mao C; He J; Bin X; Liu G; Dong Z; Zhao R; Wan X; Li X Sci Data; 2024 Apr; 11(1):396. PubMed ID: 38637640 [TBL] [Abstract][Full Text] [Related]
2. Two new complete mitochondrial genomes of Dorcus stag beetles (Coleoptera, Lucanidae). Chen Y; Liu J; Cao Y; Zhou S; Wan X Genes Genomics; 2018 Aug; 40(8):873-880. PubMed ID: 30047116 [TBL] [Abstract][Full Text] [Related]
3. A chromosomal-level genome assembly of Serrognathus titanus Boisduval, 1835 (Coleoptera: Lucanidae). Jin J; Zhan Z; Ye M; Jing S Sci Data; 2024 Aug; 11(1):888. PubMed ID: 39147807 [TBL] [Abstract][Full Text] [Related]
4. A chromosome-level genome assembly of Prosopocoilus inquinatus Westwood, 1848 (Coleoptera: Lucanidae). Pang B; Zhan Z; Wang Y Sci Data; 2024 Jul; 11(1):808. PubMed ID: 39033188 [TBL] [Abstract][Full Text] [Related]
5. The first mitogenomic phylogenetic framework of Dorcus sensu lato (Coleoptera: Lucanidae), with an emphasis on generic taxonomy in Eastern Asia. Jafir M; Zhou L; Chen Y; Wan X BMC Ecol Evol; 2024 May; 24(1):66. PubMed ID: 38773381 [TBL] [Abstract][Full Text] [Related]
6. New Mitogenomes of Two Chinese Stag Beetles (Coleoptera, Lucanidae) and Their Implications for Systematics. Lin ZQ; Song F; Li T; Wu YY; Wan X J Insect Sci; 2017 Jan; 17(2):. PubMed ID: 28931158 [TBL] [Abstract][Full Text] [Related]
7. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle. Kim SI; Farrell BD Mol Phylogenet Evol; 2015 May; 86():35-48. PubMed ID: 25732069 [TBL] [Abstract][Full Text] [Related]
8. Investigation of Fungal Community Structure in the Gut of the Stag Beetle Dorcus hopei (Coleoptera; Lucanidae): Comparisons Among Developmental Stages. Bin X; Wang P; Shen Y; Xiang X; Jafir M; Wan X Microb Ecol; 2024 May; 87(1):70. PubMed ID: 38740585 [TBL] [Abstract][Full Text] [Related]
9. Development of Seven Microsatellite Markers Using Next Generation Sequencing for the Conservation on the Korean Population of Dorcus hopei (E. Saunders, 1854) (Coleoptera, Lucanidae). Kang TH; Han SH; Park SJ Int J Mol Sci; 2015 Sep; 16(9):21330-41. PubMed ID: 26370965 [TBL] [Abstract][Full Text] [Related]
10. Phylogeny of Japanese stag beetles (Coleoptera: Lucanidae) inferred from 16S mtrRNA gene sequences, with reference to the evolution of sexual dimorphism of mandibles. Hosoya T; Araya K Zoolog Sci; 2005 Dec; 22(12):1305-18. PubMed ID: 16462103 [TBL] [Abstract][Full Text] [Related]
11. Marked variations in diversity and functions of gut microbiota between wild and domestic stag beetle Dorcus Hopei Hopei. Lu Y; Chu S; Shi Z; You R; Chen H BMC Microbiol; 2024 Jan; 24(1):24. PubMed ID: 38238710 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive Analyses of the Complete Mitochondrial Genome of Figulus binodulus (Coleoptera: Lucanidae). Lee J; Park J; Xi H; Park J J Insect Sci; 2020 Sep; 20(5):. PubMed ID: 32976575 [TBL] [Abstract][Full Text] [Related]
13. Chromosome-level genome assembly of the Japanese sawyer beetle Monochamus alternatus. Gao YF; Yang FY; Song W; Cao LJ; Chen JC; Shen XJ; Qu LJ; Zong SX; Wei SJ Sci Data; 2024 Feb; 11(1):199. PubMed ID: 38351308 [TBL] [Abstract][Full Text] [Related]
14. The genome sequence of the lesser stag beetle, Crowley LM; Phillips D; ; ; ; ; ; ; Wellcome Open Res; 2024; 9():202. PubMed ID: 39184130 [TBL] [Abstract][Full Text] [Related]
15. Decaying Wood Preference of Stag Beetles (Coleoptera: Lucanidae) in a Tropical Dry-Evergreen Forest. Songvorawit N; Butcher BA; Chaisuekul C Environ Entomol; 2017 Dec; 46(6):1322-1328. PubMed ID: 29069306 [TBL] [Abstract][Full Text] [Related]
16. Chromosome analysis and rDNA FISH in the stag beetle Dorcus parallelipipedus L. (Coleoptera: Scarabaeoidea: Lucanidae). Colomba MS; Vitturi R; Zunino M Hereditas; 2000; 133(3):249-53. PubMed ID: 11433969 [TBL] [Abstract][Full Text] [Related]
17. Chromosome-level genome assembly of the predator Propylea japonica to understand its tolerance to insecticides and high temperatures. Zhang L; Li S; Luo J; Du P; Wu L; Li Y; Zhu X; Wang L; Zhang S; Cui J Mol Ecol Resour; 2020 Jan; 20(1):292-307. PubMed ID: 31599108 [TBL] [Abstract][Full Text] [Related]
18. Chromosome-level genome assembly of the Colorado potato beetle, Leptinotarsa decemlineata. Yan J; Zhang C; Zhang M; Zhou H; Zuo Z; Ding X; Zhang R; Li F; Gao Y Sci Data; 2023 Jan; 10(1):36. PubMed ID: 36653371 [TBL] [Abstract][Full Text] [Related]
19. A chromosome-scale genome assembly of the nipa palm hispid beetle Octodonta nipae. Tang B; Yin C; He K; Tao S; Fu L; Liu Y; Li F; Hou Y Sci Data; 2024 May; 11(1):562. PubMed ID: 38816381 [TBL] [Abstract][Full Text] [Related]
20. A chromosome-level assembly of the harlequin ladybird Harmonia axyridis as a genomic resource to study beetle and invasion biology. Chen M; Mei Y; Chen X; Chen X; Xiao D; He K; Li Q; Wu M; Wang S; Zhang F; Li F Mol Ecol Resour; 2021 May; 21(4):1318-1332. PubMed ID: 33529495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]