These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 38637702)
1. Preparation of AIEgen-based near-infrared afterglow luminescence nanoprobes for tumor imaging and image-guided tumor resection. Chen C; Zhang X; Gao Z; Feng G; Ding D Nat Protoc; 2024 Aug; 19(8):2408-2434. PubMed ID: 38637702 [TBL] [Abstract][Full Text] [Related]
2. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery. Ni X; Zhang X; Duan X; Zheng HL; Xue XS; Ding D Nano Lett; 2019 Jan; 19(1):318-330. PubMed ID: 30556699 [TBL] [Abstract][Full Text] [Related]
3. Radiopharmaceutical and Eu Shi X; Cao C; Zhang Z; Tian J; Hu Z J Nanobiotechnology; 2021 Jul; 19(1):212. PubMed ID: 34271928 [TBL] [Abstract][Full Text] [Related]
4. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Sun SK; Wang HF; Yan XP Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602 [TBL] [Abstract][Full Text] [Related]
5. 808 nm light triggered lanthanide nanoprobes with enhanced down-shifting emission beyond 1500 nm for imaging-guided resection surgery of tumor and vascular visualization. I YL; Jiang M; Xue Z; Zeng S Theranostics; 2020; 10(15):6875-6885. PubMed ID: 32550909 [TBL] [Abstract][Full Text] [Related]
6. Near-Infrared Afterglow Luminescence of Chlorin Nanoparticles for Ultrasensitive Chen W; Zhang Y; Li Q; Jiang Y; Zhou H; Liu Y; Miao Q; Gao M J Am Chem Soc; 2022 Apr; 144(15):6719-6726. PubMed ID: 35380810 [TBL] [Abstract][Full Text] [Related]
7. Calixarene-Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Image-Guided Cancer Surgery. Chen C; Ni X; Tian HW; Liu Q; Guo DS; Ding D Angew Chem Int Ed Engl; 2020 Jun; 59(25):10008-10012. PubMed ID: 31981392 [TBL] [Abstract][Full Text] [Related]
9. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents. Dang Q; Jiang Y; Wang J; Wang J; Zhang Q; Zhang M; Luo S; Xie Y; Pu K; Li Q; Li Z Adv Mater; 2020 Dec; 32(52):e2006752. PubMed ID: 33175432 [TBL] [Abstract][Full Text] [Related]
10. Large Hollow Cavity Luminous Nanoparticles with Near-Infrared Persistent Luminescence and Tunable Sizes for Tumor Afterglow Imaging and Chemo-/Photodynamic Therapies. Wang J; Li J; Yu J; Zhang H; Zhang B ACS Nano; 2018 May; 12(5):4246-4258. PubMed ID: 29676899 [TBL] [Abstract][Full Text] [Related]
11. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging. Yang L; Zhao M; Chen W; Zhu J; Xu W; Li Q; Pu K; Miao Q Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202313117. PubMed ID: 38018329 [TBL] [Abstract][Full Text] [Related]
12. Ultrabright NIR-II Nanoprobe for Image-Guided Accurate Resection of Tiny Metastatic Lesions. Xu H; Yuan L; Shi Q; Tian Y; Hu F Nano Lett; 2024 Jan; 24(4):1367-1375. PubMed ID: 38227970 [TBL] [Abstract][Full Text] [Related]
13. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Xu Y; Yang W; Yao D; Bian K; Zeng W; Liu K; Wang D; Zhang B Chem Sci; 2020 Jan; 11(2):419-428. PubMed ID: 32190262 [TBL] [Abstract][Full Text] [Related]
14. Ratiometric Afterglow Luminescent Imaging of Matrix Metalloproteinase-2 Activity via an Energy Diversion Process. Huang W; Zeng W; Huang Z; Fang D; Liu H; Feng M; Mao L; Ye D Angew Chem Int Ed Engl; 2024 Jun; 63(26):e202404244. PubMed ID: 38639067 [TBL] [Abstract][Full Text] [Related]
15. Dye Sensitization Offers a Brighter Afterglow Nanoparticle Future for in vivo Recharged Luminescent Imaging. Zhou J; Huang K; Lin S; Zhang N; Wang X; Li Y; Li Z; Han G Chemistry; 2022 May; 28(26):e202104366. PubMed ID: 35218098 [TBL] [Abstract][Full Text] [Related]
16. Organic Nanoparticles with Persistent Luminescence for In Vivo Afterglow Imaging-Guided Photodynamic Therapy. Zheng X; Wu W; Zheng Y; Ding Y; Xiang Y; Liu B; Tong A Chemistry; 2021 Apr; 27(23):6911-6916. PubMed ID: 33556210 [TBL] [Abstract][Full Text] [Related]
17. Photoactivatable Red Chemiluminescent AIEgen Probe for Li J; Hu Y; Li Z; Liu W; Deng T; Li J Anal Chem; 2021 Aug; 93(30):10601-10610. PubMed ID: 34296856 [TBL] [Abstract][Full Text] [Related]
18. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Jiang Y; Huang J; Zhen X; Zeng Z; Li J; Xie C; Miao Q; Chen J; Chen P; Pu K Nat Commun; 2019 May; 10(1):2064. PubMed ID: 31048701 [TBL] [Abstract][Full Text] [Related]
19. A Self-Sustaining Near-Infrared Afterglow Chemiluminophore for High-Contrast Activatable Imaging. Zhu J; Chen W; Yang L; Zhang Y; Cheng B; Gu W; Li Q; Miao Q Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318545. PubMed ID: 38247345 [TBL] [Abstract][Full Text] [Related]
20. Surface-adaptive nanoparticles with near-infrared aggregation-induced emission for image-guided tumor resection. Zhang X; Li C; Liu W; Ou H; Ding D Sci China Life Sci; 2019 Nov; 62(11):1472-1480. PubMed ID: 31701408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]