These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38638064)

  • 1. Modeling the risk of aquatic species invasion spread through boater movements and river connections.
    Kinsley AC; Kao SZ; Enns EA; Escobar LE; Qiao H; Snellgrove N; Muellner U; Muellner P; Muthukrishnan R; Craft ME; Larkin DJ; Phelps NBD
    Conserv Biol; 2024 Apr; ():e14260. PubMed ID: 38638064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Probability Co-Kriging Model to Account for Reporting Bias and Recognize Areas at High Risk for Zebra Mussels and Eurasian Watermilfoil Invasions in Minnesota.
    Kanankege KST; Alkhamis MA; Phelps NBD; Perez AM
    Front Vet Sci; 2017; 4():231. PubMed ID: 29354638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AIS explorer: Prioritization for watercraft inspections-A decision-support tool for aquatic invasive species management.
    Kinsley AC; Haight RG; Snellgrove N; Muellner P; Muellner U; Duhr M; Phelps NBD
    J Environ Manage; 2022 Jul; 314():115037. PubMed ID: 35462252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios.
    Romero-Alvarez D; Escobar LE; Varela S; Larkin DJ; Phelps NBD
    PLoS One; 2017; 12(7):e0180930. PubMed ID: 28704433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of dreissenid mussel invasions in western US lakes within an integrated gravity model framework.
    Carrillo CC; Charbonneau BR; Altman S; Keele JA; Pucherelli SF; Passamaneck YJ; Murphy AC; Swannack TM
    J Environ Manage; 2023 Apr; 332():117383. PubMed ID: 36736086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Managing aquatic invasions: Optimal locations and operating times for watercraft inspection stations.
    Fischer SM; Beck M; Herborg LM; Lewis MA
    J Environ Manage; 2021 Apr; 283():111923. PubMed ID: 33477097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the spread of aquatic invaders: insight from 200 years of invasion by zebra mussels.
    Karatayev AY; Burlakova LE; Mastitsky SE; Padilla DK
    Ecol Appl; 2015 Mar; 25(2):430-40. PubMed ID: 26263665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A within-lake occupancy model for starry stonewort, Nitellopsis obtusa, to support early detection and monitoring.
    Bajcz AW; Glisson WJ; Doser JW; Larkin DJ; Fieberg JR
    Sci Rep; 2024 Feb; 14(1):2644. PubMed ID: 38302527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultivation of zebra mussels (Dreissena polymorpha) within their invaded range to improve water quality in reservoirs.
    McLaughlan C; Aldridge DC
    Water Res; 2013 Sep; 47(13):4357-69. PubMed ID: 23764587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recreationist willingness to pay for aquatic invasive species management.
    Levers LR; Pradhananga AK
    PLoS One; 2021; 16(4):e0246860. PubMed ID: 33852584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating relative risk of within-lake aquatic plant invasion using combined measures of recreational boater movement and habitat suitability.
    Wittmann ME; Kendall BE; Jerde CL; Anderson LW
    PeerJ; 2015; 3():e845. PubMed ID: 25802813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure.
    Leung B; Mandrak NE
    Proc Biol Sci; 2007 Oct; 274(1625):2603-9. PubMed ID: 17711834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realized niche shift associated with the Eurasian charophyte Nitellopsis obtusa becoming invasive in North America.
    Escobar LE; Qiao H; Phelps NB; Wagner CK; Larkin DJ
    Sci Rep; 2016 Jul; 6():29037. PubMed ID: 27363541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genome of the zebra mussel, Dreissena polymorpha: a resource for comparative genomics, invasion genetics, and biocontrol.
    McCartney MA; Auch B; Kono T; Mallez S; Zhang Y; Obille A; Becker A; Abrahante JE; Garbe J; Badalamenti JP; Herman A; Mangelson H; Liachko I; Sullivan S; Sone ED; Koren S; Silverstein KAT; Beckman KB; Gohl DM
    G3 (Bethesda); 2022 Feb; 12(2):. PubMed ID: 34897429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bi-level model for state and county aquatic invasive species prevention decisions.
    Haight RG; Yemshanov D; Kao SY; Phelps NBD; Kinsley AC
    J Environ Manage; 2023 Feb; 327():116855. PubMed ID: 36462487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of the oldest record of Nitellopsis obtusa (Charophyceae, Charophyta) in North America.
    Karol KG; Sleith RS
    J Phycol; 2017 Oct; 53(5):1106-1108. PubMed ID: 28653746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aquatic invasive species: challenges for the future.
    Havel JE; Kovalenko KE; Thomaz SM; Amalfitano S; Kats LB
    Hydrobiologia; 2015; 750(1):147-170. PubMed ID: 32214452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the success of invasive species prevention efforts at changing the behaviors of recreational boaters.
    Cole E; Keller RP; Garbach K
    J Environ Manage; 2016 Dec; 184(Pt 2):210-218. PubMed ID: 27717674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is the body condition of the invasive zebra mussel (Dreissena polymorpha) enhanced through attachment to native freshwater mussels (Bivalvia, Unionidae)?
    Pilotto F; Sousa R; Aldridge DC
    Sci Total Environ; 2016 May; 553():243-249. PubMed ID: 26925735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invasive zebra mussel (
    Ożgo M; Urbańska M; Hoos P; Imhof HK; Kirschenstein M; Mayr J; Michl F; Tobiasz R; von Wesendonk M; Zimmermann S; Geist J
    Ecol Evol; 2020 Jun; 10(11):4918-4927. PubMed ID: 32551070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.