These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 38638068)
41. Temperature and Time of Steeping Affect the Antioxidant Properties of White, Green, and Black Tea Infusions. Hajiaghaalipour F; Sanusi J; Kanthimathi MS J Food Sci; 2016 Jan; 81(1):H246-54. PubMed ID: 26613545 [TBL] [Abstract][Full Text] [Related]
42. Anti-adenovirus activity, antioxidant potential, and phenolic content of black tea (Camellia sinensis Kuntze) extract. Karimi A; Moradi MT; Alidadi S; Hashemi L J Complement Integr Med; 2016 Dec; 13(4):357-363. PubMed ID: 27567600 [TBL] [Abstract][Full Text] [Related]
43. Kombucha with yam: Comprehensive biochemical, microbiological, and sensory characteristics. Bressani APP; Casimiro LKS; Martinez SJ; Dias DR; Schwan RF Food Res Int; 2024 Sep; 192():114762. PubMed ID: 39147483 [TBL] [Abstract][Full Text] [Related]
44. Ultrafiltration isolation, physicochemical characterization, and antidiabetic activities analysis of polysaccharides from green tea, oolong tea, and black tea. Xu L; Chen Y; Chen Z; Gao X; Wang C; Panichayupakaranant P; Chen H J Food Sci; 2020 Nov; 85(11):4025-4032. PubMed ID: 33037621 [TBL] [Abstract][Full Text] [Related]
45. Polyphenolic profile and antioxidant activity of meristem and leaves from "chagual" (Puya chilensis Mol.), a salad from central Chile. Jiménez-Aspee F; Theoduloz C; Gómez-Alonso S; Hermosín-Gutiérrez I; Reyes M; Schmeda-Hirschmann G Food Res Int; 2018 Dec; 114():90-96. PubMed ID: 30361031 [TBL] [Abstract][Full Text] [Related]
46. Phenolic antioxidants from green tea produced from Camellia taliensis. Gao DF; Zhang YJ; Yang CR; Chen KK; Jiang HJ J Agric Food Chem; 2008 Aug; 56(16):7517-21. PubMed ID: 18636681 [TBL] [Abstract][Full Text] [Related]
47. Characteristics and upregulation of antioxidant enzymes of kitchen mint and oolong tea kombucha beverages. Tanticharakunsiri W; Mangmool S; Wongsariya K; Ochaikul D J Food Biochem; 2021 Jan; 45(1):e13574. PubMed ID: 33249612 [TBL] [Abstract][Full Text] [Related]
48. Preservation of kombucha tea-effect of temperature on tea components and free radical scavenging properties. Jayabalan R; Marimuthu S; Thangaraj P; Sathishkumar M; Binupriya AR; Swaminathan K; Yun SE J Agric Food Chem; 2008 Oct; 56(19):9064-71. PubMed ID: 18781766 [TBL] [Abstract][Full Text] [Related]
49. CATECHINS PROFILE, CAFFEINE CONTENT AND ANTIOXIDANT ACTIVITY OF CAMELLIA SINENSIS TEAS COMMERCIALIZED IN ROMANIA. Luca VS; Stan AM; Trifan A; Miron A; Aprotosoaie AC Rev Med Chir Soc Med Nat Iasi; 2016; 120(2):457-63. PubMed ID: 27483735 [TBL] [Abstract][Full Text] [Related]
50. C-geranylated flavanones from YingDe black tea and their antioxidant and α-glucosidase inhibition activities. Zhou H; Li HM; Du YM; Yan RA; Ou SY; Chen TF; Wang Y; Zhou LX; Fu L Food Chem; 2017 Nov; 235():227-233. PubMed ID: 28554631 [TBL] [Abstract][Full Text] [Related]
51. Evaluation of the in vitro α-glucosidase inhibitory activity of green tea polyphenols and different tea types. Yang X; Kong F J Sci Food Agric; 2016 Feb; 96(3):777-82. PubMed ID: 25707691 [TBL] [Abstract][Full Text] [Related]
52. Mechanistic study on the inhibition of α-amylase and α-glucosidase using the extract of ultrasound-treated coffee leaves. Sun Y; Cao Q; Huang Y; Lu T; Ma H; Chen X J Sci Food Agric; 2024 Jan; 104(1):63-74. PubMed ID: 37515816 [TBL] [Abstract][Full Text] [Related]
53. Coffee Husk By-Product as Novel Ingredients for Cascara Kombucha Production. Le BXN; Phan Van T; Phan QK; Pham GB; Quang HP; Do AD J Microbiol Biotechnol; 2024 Mar; 34(3):673-680. PubMed ID: 38346818 [TBL] [Abstract][Full Text] [Related]
54. A New Substrate and Nitrogen Source for Traditional Kombucha Beverage: Stevia rebaudiana Leaves. Gülhan MF Appl Biochem Biotechnol; 2023 Jul; 195(7):4096-4115. PubMed ID: 36656538 [TBL] [Abstract][Full Text] [Related]
55. Effect of roasting degree on the antioxidant activity of different Arabica coffee quality classes. Odžaković B; Džinić N; Kukrić Z; Grujić S Acta Sci Pol Technol Aliment; 2016; 15(4):409-417. PubMed ID: 28071018 [TBL] [Abstract][Full Text] [Related]
56. Chemical compositions and bioactivities of crude polysaccharides from tea leaves beyond their useful date. Xiao J; Huo J; Jiang H; Yang F Int J Biol Macromol; 2011 Dec; 49(5):1143-51. PubMed ID: 21946077 [TBL] [Abstract][Full Text] [Related]
57. Effects of hot-air drying on the bioactive compounds, quality attributes, and drying and color change kinetics of coffee leaves. Huang Y; Sun Y; Lu T; Chen X J Food Sci; 2023 Jan; 88(1):214-227. PubMed ID: 36533940 [TBL] [Abstract][Full Text] [Related]
58. Antioxidant and Sensory Assessment of Innovative Coffee Blends of Reduced Caffeine Content. Šeremet D; Fabečić P; Vojvodić Cebin A; Mandura Jarić A; Pudić R; Komes D Molecules; 2022 Jan; 27(2):. PubMed ID: 35056759 [TBL] [Abstract][Full Text] [Related]
59. Antioxidant and antifungal activities of Camellia sinensis (L.) Kuntze leaves obtained by different forms of production. Camargo LE; Pedroso LS; Vendrame SC; Mainardes RM; Khalil NM Braz J Biol; 2016 Jun; 76(2):428-34. PubMed ID: 26983085 [TBL] [Abstract][Full Text] [Related]
60. Acrylamide formation and antioxidant activity in coffee during roasting - A systematic study. Schouten MA; Tappi S; Angeloni S; Cortese M; Caprioli G; Vittori S; Romani S Food Chem; 2021 May; 343():128514. PubMed ID: 33187741 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]