These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Relative Quantification of siRNA Strand Loading into Ago2 for Design of Highly Active siRNAs. Angart PA; Adu-Berchie K; Carlson RJ; Vocelle DB; Chan C; Walton SP Methods Mol Biol; 2019; 1974():41-56. PubMed ID: 31098994 [TBL] [Abstract][Full Text] [Related]
6. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover. Rawlings RA; Krishnan V; Walter NG J Mol Biol; 2011 Apr; 408(2):262-76. PubMed ID: 21354178 [TBL] [Abstract][Full Text] [Related]
7. A protein sensor for siRNA asymmetry. Tomari Y; Matranga C; Haley B; Martinez N; Zamore PD Science; 2004 Nov; 306(5700):1377-80. PubMed ID: 15550672 [TBL] [Abstract][Full Text] [Related]
8. [Components and assembly of RNA-induced silencing complex]. Song XM; Yan F; Du LX Yi Chuan; 2006 Jun; 28(6):761-6. PubMed ID: 16818443 [TBL] [Abstract][Full Text] [Related]
9. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Rand TA; Petersen S; Du F; Wang X Cell; 2005 Nov; 123(4):621-9. PubMed ID: 16271385 [TBL] [Abstract][Full Text] [Related]
11. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Gregory RI; Chendrimada TP; Cooch N; Shiekhattar R Cell; 2005 Nov; 123(4):631-40. PubMed ID: 16271387 [TBL] [Abstract][Full Text] [Related]
12. In-silico analysis for RNA-interference mechanism of α-synuclein to treat Parkinson's disease. Seema S; Seenivasagam R; Hemavathi K Int J Bioinform Res Appl; 2013; 9(6):557-75. PubMed ID: 24084237 [TBL] [Abstract][Full Text] [Related]
13. Molecular basis for target RNA recognition and cleavage by human RISC. Ameres SL; Martinez J; Schroeder R Cell; 2007 Jul; 130(1):101-12. PubMed ID: 17632058 [TBL] [Abstract][Full Text] [Related]
14. RNA helicase A is not required for RISC activity. Liang XH; Crooke ST Biochim Biophys Acta; 2013 Oct; 1829(10):1092-101. PubMed ID: 23895878 [TBL] [Abstract][Full Text] [Related]
15. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Liu Y; Ye X; Jiang F; Liang C; Chen D; Peng J; Kinch LN; Grishin NV; Liu Q Science; 2009 Aug; 325(5941):750-3. PubMed ID: 19661431 [TBL] [Abstract][Full Text] [Related]
16. Molecular requirements for RNA-induced silencing complex assembly in the Drosophila RNA interference pathway. Pham JW; Sontheimer EJ J Biol Chem; 2005 Nov; 280(47):39278-83. PubMed ID: 16179342 [TBL] [Abstract][Full Text] [Related]
17. [Progress of RNA interference mechanism]. Yan F; Cheng ZM Yi Chuan; 2005 Jan; 27(1):167-72. PubMed ID: 15730978 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic analysis of the enhanced RNAi activity by 6-mCEPh-purine at the 5' end of the siRNA guide strand. Brechin V; Shinohara F; Saito JI; Seitz H; Tomari Y RNA; 2021 Feb; 27(2):151-162. PubMed ID: 33177187 [TBL] [Abstract][Full Text] [Related]
19. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Iwasaki S; Kobayashi M; Yoda M; Sakaguchi Y; Katsuma S; Suzuki T; Tomari Y Mol Cell; 2010 Jul; 39(2):292-9. PubMed ID: 20605501 [TBL] [Abstract][Full Text] [Related]
20. Terminal Duplex Stability and Nucleotide Identity Differentially Control siRNA Loading and Activity in RNA Interference. Angart PA; Carlson RJ; Adu-Berchie K; Walton SP Nucleic Acid Ther; 2016 Oct; 26(5):309-317. PubMed ID: 27399870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]