These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38638224)

  • 1. Electronic
    Zhang Y; Zhao S; Položij M; Heine T
    Chem Sci; 2024 Apr; 15(15):5757-5763. PubMed ID: 38638224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental realization and characterization of an electronic Lieb lattice.
    Slot MR; Gardenier TS; Jacobse PH; van Miert GCP; Kempkes SN; Zevenhuizen SJM; Smith CM; Vanmaekelbergh D; Swart I
    Nat Phys; 2017 Jul; 13(7):672-676. PubMed ID: 28706560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological Band Engineering of Lieb Lattice in Phthalocyanine-Based Metal-Organic Frameworks.
    Jiang W; Zhang S; Wang Z; Liu F; Low T
    Nano Lett; 2020 Mar; 20(3):1959-1966. PubMed ID: 32078326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exotic Topological Bands and Quantum States in Metal-Organic and Covalent-Organic Frameworks.
    Jiang W; Ni X; Liu F
    Acc Chem Res; 2021 Jan; 54(2):416-426. PubMed ID: 33400497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ag
    Yang T; Luo YZ; Wang Z; Zhu T; Pan H; Wang S; Lau SP; Feng YP; Yang M
    Nanoscale; 2021 Sep; 13(33):14008-14015. PubMed ID: 34477681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism.
    Jiang W; Huang H; Liu F
    Nat Commun; 2019 May; 10(1):2207. PubMed ID: 31101812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism.
    Cui B; Zheng X; Wang J; Liu D; Xie S; Huang B
    Nat Commun; 2020 Jan; 11(1):66. PubMed ID: 31898693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous plasmons in a two-dimensional Dirac nodal-line Lieb lattice.
    Ding C; Gao H; Geng W; Zhao M
    Nanoscale Adv; 2021 Feb; 3(4):1127-1135. PubMed ID: 36133292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Realization of Two-Dimensional Buckled Lieb Lattice.
    Feng H; Liu C; Zhou S; Gao N; Gao Q; Zhuang J; Xu X; Hu Z; Wang J; Chen L; Zhao J; Dou SX; Du Y
    Nano Lett; 2020 Apr; 20(4):2537-2543. PubMed ID: 32182079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics.
    Ni X; Li H; Liu F; Brédas JL
    Mater Horiz; 2022 Jan; 9(1):88-98. PubMed ID: 34866138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling double flat bands in a quadrangular-star lattice.
    Jiang J; Jiang W; Zhang S; Xie Y; Chen Y
    Nanoscale; 2023 May; 15(19):8825-8831. PubMed ID: 37114430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dirac node lines in two-dimensional Lieb lattices.
    Yang B; Zhang X; Zhao M
    Nanoscale; 2017 Jun; 9(25):8740-8746. PubMed ID: 28616940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS.
    Schoop LM; Ali MN; Straßer C; Topp A; Varykhalov A; Marchenko D; Duppel V; Parkin SS; Lotsch BV; Ast CR
    Nat Commun; 2016 May; 7():11696. PubMed ID: 27241624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Landau levels and snake states of pseudo-spin-1 Dirac-like electrons in gapped Lieb lattices.
    Jakubský V; Zelaya K
    J Phys Condens Matter; 2022 Nov; 51(2):. PubMed ID: 36317292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serendipity of a topological nontrivial band gap in the 2D borophene subunit lattice with broken mirror symmetry.
    Wang A; Shen L; Zhao M; Zhang X; He T; Li W; Feng Y; Liu H
    Phys Chem Chem Phys; 2019 Oct; 21(40):22526-22530. PubMed ID: 31588445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Massive Dirac fermions in a ferromagnetic kagome metal.
    Ye L; Kang M; Liu J; von Cube F; Wicker CR; Suzuki T; Jozwiak C; Bostwick A; Rotenberg E; Bell DC; Fu L; Comin R; Checkelsky JG
    Nature; 2018 Mar; 555(7698):638-642. PubMed ID: 29555992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental realization of a reconfigurable Lieb photonic lattice in a coherent atomic medium.
    Liang S; Liu Z; Ning S; Zhang Y; Zhang Z
    Opt Lett; 2023 Feb; 48(3):803-806. PubMed ID: 36723593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of a flat band on a multiband two-dimensional Lieb lattice with intra- and interband interactions.
    Faúndez J; Magalhães SG; Riseborough PS; Reyes-Lillo SE
    J Phys Condens Matter; 2024 Feb; 36(19):. PubMed ID: 38286011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice.
    Taie S; Ozawa H; Ichinose T; Nishio T; Nakajima S; Takahashi Y
    Sci Adv; 2015 Nov; 1(10):e1500854. PubMed ID: 26665167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling.
    Whittaker CE; Cancellieri E; Walker PM; Gulevich DR; Schomerus H; Vaitiekus D; Royall B; Whittaker DM; Clarke E; Iorsh IV; Shelykh IA; Skolnick MS; Krizhanovskii DN
    Phys Rev Lett; 2018 Mar; 120(9):097401. PubMed ID: 29547302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.