These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38638361)

  • 1. Can lower-limb exoskeletons support sit-to-stand motions in frail elderly without crutches? A study combining optimal control and motion capture.
    Lau JCL; Mombaur K
    Front Neurorobot; 2024; 18():1348029. PubMed ID: 38638361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile Dynamic Motion Generation Framework: Demonstration With a Crutch-Less Exoskeleton on Real-Life Obstacles at the Cybathlon 2020 With a Complete Paraplegic Person.
    Huynh V; Burger G; Dang QV; Pelgé R; Boéris G; Grizzle JW; Ames AD; Masselin M
    Front Robot AI; 2021; 8():723780. PubMed ID: 34631804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches.
    Smith AJJ; Fournier BN; Nantel J; Lemaire ED
    J Biomech; 2020 Jun; 107():109835. PubMed ID: 32517865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation.
    Liu J; He Y; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wearable exoskeleton suit for motion assistance to paralysed patients.
    Chen B; Zhong CH; Zhao X; Ma H; Guan X; Li X; Liang FY; Cheng JCY; Qin L; Law SW; Liao WH
    J Orthop Translat; 2017 Oct; 11():7-18. PubMed ID: 29662765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning.
    Tang S; Chen L; Barsotti M; Hu L; Li Y; Wu X; Bai L; Frisoli A; Hou W
    Front Neurorobot; 2019; 13():99. PubMed ID: 31849635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure.
    Yang W; Zhang J; Zhang S; Yang C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Crutch Gait Pattern on Shoulder Reaction Force when Walking with Lower Limb Exoskeletons.
    Chen X; Cheng X; Fong J; Oetomo D; Tan Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7574-7577. PubMed ID: 34892843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of a lower limb exoskeleton using Learning from Demonstration and an iterative Linear Quadratic Regulator Controller: A simulation study.
    Goldfarb N; Zhou H; Bales C; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4687-4693. PubMed ID: 34892259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Development and Preliminary Test of a Powered Alternately Walking Exoskeleton With the Wheeled Foot for Paraplegic Patients.
    Ma Q; Ji L; Wang R
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):451-459. PubMed ID: 29432112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Utility of Crutch Force Sensors to Predict User Intent in Assistive Lower Limb Exoskeletons.
    Fong J; Bernacki K; Pham D; Shah R; Tan Y; Oetomo D
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of muscle weakness on the capability gap during gross motor function: a simulation study supporting design criteria for exoskeletons of the lower limb.
    Afschrift M; De Groote F; De Schutter J; Jonkers I
    Biomed Eng Online; 2014 Aug; 13():111. PubMed ID: 25092209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary Assessment of Muscle Activity and Muscle Characteristics during Training with Powered Robotic Exoskeleton: A Repeated-Measures Study.
    Kim SH; Shin HJ; Cho HY
    Healthcare (Basel); 2021 Aug; 9(8):. PubMed ID: 34442139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the sit-to-stand transfer assistance from a smart walker in older adults with motor impairments.
    Werner C; Geravand M; Korondi PZ; Peer A; Bauer JM; Hauer K
    Geriatr Gerontol Int; 2020 Apr; 20(4):312-316. PubMed ID: 32006458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An assistive lower limb exoskeleton for people with neurological gait disorders.
    Ortlieb A; Bouri M; Baud R; Bleuler H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():441-446. PubMed ID: 28813859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.