These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38638499)

  • 1. Mixed reality based teleoperation and visualization of surgical robotics.
    Ai L; Kazanzides P; Azimi E
    Healthc Technol Lett; 2024; 11(2-3):179-188. PubMed ID: 38638499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hamlyn CRM: a compact master manipulator for surgical robot remote control.
    Zhang D; Liu J; Zhang L; Yang GZ
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):503-514. PubMed ID: 31956954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ergonomic comfort workspace analysis of master manipulator for robotic laparoscopic surgery with motion scaled teleoperation system.
    Kang D; Kwon DS
    Int J Med Robot; 2022 Dec; 18(6):e2448. PubMed ID: 35986717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters.
    Kim Y; Leonard S; Shademan A; Krieger A; Kim PC
    Surg Endosc; 2014 Jun; 28(6):1993-2000. PubMed ID: 24380997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Setup Employed in the Operating Room Based on Virtual and Mixed Reality: Analysis of Pros and Cons in Open Abdomen Surgery.
    Galati R; Simone M; Barile G; De Luca R; Cartanese C; Grassi G
    J Healthc Eng; 2020; 2020():8851964. PubMed ID: 32832048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A manipulative instrument with simultaneous gesture and end-effector trajectory planning and controlling.
    Lin HI; Nguyen XA
    Rev Sci Instrum; 2017 May; 88(5):055107. PubMed ID: 28571409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of three different techniques for camera and motion control of a teleoperated robot.
    Doisy G; Ronen A; Edan Y
    Appl Ergon; 2017 Jan; 58():527-534. PubMed ID: 27181096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sEMG Proportional Control for the Gripper of Patient Side Manipulator in da Vinci Surgical System.
    Yang K; Meier TB; Zhou H; Fischer GS; Nycz CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4843-4848. PubMed ID: 36086516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmented Reality Visualization for Image-Guided Surgery: A Validation Study Using a Three-Dimensional Printed Phantom.
    Glas HH; Kraeima J; van Ooijen PMA; Spijkervet FKL; Yu L; Witjes MJH
    J Oral Maxillofac Surg; 2021 Sep; 79(9):1943.e1-1943.e10. PubMed ID: 34033801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadaveric feasibility study of da Vinci Si-assisted cochlear implant with augmented visual navigation for otologic surgery.
    Liu WP; Azizian M; Sorger J; Taylor RH; Reilly BK; Cleary K; Preciado D
    JAMA Otolaryngol Head Neck Surg; 2014 Mar; 140(3):208-14. PubMed ID: 24457635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of stereo endoscope system with its innovative master interface for continuous surgical operation.
    Kim M; Lee C; Hong N; Kim YJ; Kim S
    Biomed Eng Online; 2017 Jun; 16(1):81. PubMed ID: 28646865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of 3-D robot teleoperation interfaces with novice users.
    Labonte D; Boissy P; Michaud F
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1331-42. PubMed ID: 20106745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Camera-Robot Calibration for the da Vinci® Robotic Surgery System.
    Özgüner O; Shkurti T; Huang S; Hao R; Jackson RC; Newman WS; Çavuşoğlu MC
    IEEE Trans Autom Sci Eng; 2020 Oct; 17(4):2154-2161. PubMed ID: 33746640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Framework for Armature-Based 3D Shape Reconstruction of Sensorized Soft Robots in eXtended Reality.
    Borges EIA; Rieder JSI; Aschenbrenner D; Scharff RBN
    Front Robot AI; 2022; 9():810328. PubMed ID: 35572373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible robotic teleoperation architecture for intelligent oil fields.
    Caiza G; Garcia CA; Naranjo JE; Garcia MV
    Heliyon; 2020 Apr; 6(4):e03833. PubMed ID: 32373738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel microwave tool for robotic liver resection in minimally invasive surgery.
    Brancadoro M; Dimitri M; Boushaki MN; Staderini F; Sinibaldi E; Capineri L; Cianchi F; Biffi Gentili G; Menciassi A
    Minim Invasive Ther Allied Technol; 2022 Jan; 31(1):42-49. PubMed ID: 32255393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented Reality Surgical Navigation System Integrated with Deep Learning.
    Chiou SY; Liu LS; Lee CW; Kim DH; Al-Masni MA; Liu HL; Wei KC; Yan JL; Chen PY
    Bioengineering (Basel); 2023 May; 10(5):. PubMed ID: 37237687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task performance evaluation of asymmetric semiautonomous teleoperation of mobile twin-arm robotic manipulators.
    Malysz P; Sirouspour S
    IEEE Trans Haptics; 2013; 6(4):484-95. PubMed ID: 24808400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.
    Wen R; Tay WL; Nguyen BP; Chng CB; Chui CK
    Comput Methods Programs Biomed; 2014 Sep; 116(2):68-80. PubMed ID: 24438993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented Reality with HoloLens® in Parotid Tumor Surgery: A Prospective Feasibility Study.
    Scherl C; Stratemeier J; Rotter N; Hesser J; Schönberg SO; Servais JJ; Männle D; Lammert A
    ORL J Otorhinolaryngol Relat Spec; 2021; 83(6):439-448. PubMed ID: 33784686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.