BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38638675)

  • 1. The malignant transformation potential of the oncogene STYK1/NOK at early lymphocyte development in transgenic mice.
    Yang Y; Liu L; Tucker HO
    Biochem Biophys Rep; 2024 Jul; 38():101709. PubMed ID: 38638675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of chronic lymphocytic leukemia-like disease in STYK1/NOK transgenic mice.
    Yang Y; Liu L; Tucker HO
    Biochem Biophys Res Commun; 2022 Oct; 626():51-57. PubMed ID: 35970044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STYK1/NOK affects cell cycle late mitosis and directly interacts with anaphase-promoting complex activator CDH1.
    Zeng SL; Patel SS; Lv MQ; Zhu D; Shen WH; Liu L
    Heliyon; 2022 Dec; 8(12):e12058. PubMed ID: 36506394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downregulation of GLUT3 impairs STYK1/NOK-mediated metabolic reprogramming and proliferation in NIH-3T3 cells.
    Shi W; Fu Y; Wang Y
    Oncol Lett; 2021 Jul; 22(1):527. PubMed ID: 34055092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostic relevance of overexpressed serine threonine tyrosine kinase/novel oncogene with kinase domain (STYK1/ NOK) mRNA in colorectal cancer.
    Orang AV; Safaralizadeh R; Hosseinpour Feizi MA; Somi MH
    Asian Pac J Cancer Prev; 2014; 15(16):6685-9. PubMed ID: 25169509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of serine threonine tyrosine kinase 1/novel oncogene with kinase domain mRNA in patients with acute leukemia.
    Kondoh T; Kobayashi D; Tsuji N; Kuribayashi K; Watanabe N
    Exp Hematol; 2009 Jul; 37(7):824-30. PubMed ID: 19409952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between the expression of CD25 and CD69 on the surface of lymphocytes T and B from peripheral blood and bone marrow of patients with chronic lymphocytic leukemia and established prognostic factors of this disease.
    Grywalska E; Bartkowiak-Emeryk M; Pasiarski M; Olszewska-Bożek K; Mielnik M; Podgajna M; Pieczykolan M; Hymos A; Fitas E; Surdacka A; Góźdź S; Roliński J
    Adv Clin Exp Med; 2018 Jul; 27(7):987-999. PubMed ID: 29893517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of CD5 Membrane Expression on B-Chronic Lymphocytic Leukemia Cells.
    Kay NE; Peterson L
    Leuk Lymphoma; 1991; 5(1):49-55. PubMed ID: 27463209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological Features of CD5+ CD19+ B1 Cell and Natural IgM (VH4-34) in Chronic Lymphocytic Leukemia vs. Multiple Sclerosis.
    Pezeshki S; Jazayeri MH; Chahardouli B; Tajik N; Nabavi SM; Akbarzadeh M
    Iran J Allergy Asthma Immunol; 2022 Dec; 21(6):670-676. PubMed ID: 36640058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The
    Perez-Chacon G; Zapata JM
    Front Immunol; 2021; 12():627602. PubMed ID: 33912159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel gene STYK1/NOK is upregulated in estrogen receptor-alpha negative estrogen receptor-beta positive breast cancer cells following estrogen treatment.
    Kimbro KS; Duschene K; Willard M; Moore JA; Freeman S
    Mol Biol Rep; 2008 Mar; 35(1):23-7. PubMed ID: 17415682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoclonal B-cell lymphocytosis in the bone marrow: revisiting the criteria for chronic lymphocytic leukemia/small lymphocytic lymphoma.
    Ryder CB; Oduro KA; Moore EM
    Hum Pathol; 2022 Jul; 125():108-116. PubMed ID: 35472399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective.
    Darwiche W; Gubler B; Marolleau JP; Ghamlouch H
    Front Immunol; 2018; 9():683. PubMed ID: 29670635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathophysiology of chronic lymphocytic leukemia and human B1 cell development.
    Kikushige Y
    Int J Hematol; 2020 May; 111(5):634-641. PubMed ID: 31797231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of trisomy 12 and Rb-deletion in CD34+ cells of patients with B-cell chronic lymphocytic leukemia.
    Gahn B; Schäfer C; Neef J; Troff C; Feuring-Buske M; Hiddemann W; Wörmann B
    Blood; 1997 Jun; 89(12):4275-81. PubMed ID: 9192749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antigen modulation followed by quantitative flow cytometry of B-chronic lymphocytic leukemia cells after treatment.
    Kusenda J; Babusíková O
    Neoplasma; 2004; 51(2):97-102. PubMed ID: 15190418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early generated B1 B cells with restricted BCRs become chronic lymphocytic leukemia with continued c-Myc and low Bmf expression.
    Hayakawa K; Formica AM; Brill-Dashoff J; Shinton SA; Ichikawa D; Zhou Y; Morse HC; Hardy RR
    J Exp Med; 2016 Dec; 213(13):3007-3024. PubMed ID: 27899442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoclonal CD5+ and CD5- B-lymphocyte expansions are frequent in the peripheral blood of the elderly.
    Ghia P; Prato G; Scielzo C; Stella S; Geuna M; Guida G; Caligaris-Cappio F
    Blood; 2004 Mar; 103(6):2337-42. PubMed ID: 14630808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD79b expression in B cell chronic lymphocytic leukemia: its implication for minimal residual disease detection.
    Garcia Vela J; Delgado I; Benito L; Monteserin M; Garcia Alonso L; Somolinos N; Andreu M; Oña F
    Leukemia; 1999 Oct; 13(10):1501-5. PubMed ID: 10516749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NOK/STYK1 promotes the genesis and remodeling of blood and lymphatic vessels during tumor progression.
    Liu Y; Li T; Hu D; Zhang S
    Biochem Biophys Res Commun; 2016 Sep; 478(1):254-259. PubMed ID: 27444381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.