BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38638999)

  • 21. Artificial intelligence-enhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases.
    Muzammil MA; Javid S; Afridi AK; Siddineni R; Shahabi M; Haseeb M; Fariha FNU; Kumar S; Zaveri S; Nashwan AJ
    J Electrocardiol; 2024; 83():30-40. PubMed ID: 38301492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning.
    Duffy G; Cheng PP; Yuan N; He B; Kwan AC; Shun-Shin MJ; Alexander KM; Ebinger J; Lungren MP; Rader F; Liang DH; Schnittger I; Ashley EA; Zou JY; Patel J; Witteles R; Cheng S; Ouyang D
    JAMA Cardiol; 2022 Apr; 7(4):386-395. PubMed ID: 35195663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial intelligence-enabled classification of hypertrophic heart diseases using electrocardiograms.
    Haimovich JS; Diamant N; Khurshid S; Di Achille P; Reeder C; Friedman S; Singh P; Spurlock W; Ellinor PT; Philippakis A; Batra P; Ho JE; Lubitz SA
    Cardiovasc Digit Health J; 2023 Apr; 4(2):48-59. PubMed ID: 37101945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea.
    Adedinsewo D; Carter RE; Attia Z; Johnson P; Kashou AH; Dugan JL; Albus M; Sheele JM; Bellolio F; Friedman PA; Lopez-Jimenez F; Noseworthy PA
    Circ Arrhythm Electrophysiol; 2020 Aug; 13(8):e008437. PubMed ID: 32986471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial intelligence-enabled ECG for left ventricular diastolic function and filling pressure.
    Lee E; Ito S; Miranda WR; Lopez-Jimenez F; Kane GC; Asirvatham SJ; Noseworthy PA; Friedman PA; Carter RE; Borlaug BA; Attia ZI; Oh JK
    NPJ Digit Med; 2024 Jan; 7(1):4. PubMed ID: 38182738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients With Pulmonary Hypertension.
    Liu CM; Shih ESC; Chen JY; Huang CH; Wu IC; Chen PF; Higa S; Yagi N; Hu YF; Hwang MJ; Chen SA
    JACC Asia; 2022 Jun; 2(3):258-270. PubMed ID: 36338407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrocardiogram-based prediction of conduction disturbances after transcatheter aortic valve replacement with convolutional neural network.
    Jia Y; Li Y; Luosang G; Wang J; Peng G; Pu X; Jiang W; Li W; Zhao Z; Peng Y; Feng Y; Wei J; Xu Y; Liu X; Yi Z; Chen M
    Eur Heart J Digit Health; 2024 May; 5(3):219-228. PubMed ID: 38774374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and validation of an electrocardiographic artificial intelligence model for detection of peripartum cardiomyopathy.
    Karabayir I; Wilkie G; Celik T; Butler L; Chinthala L; Ivanov A; Moore Simas TA; Davis RL; Akbilgic O
    Am J Obstet Gynecol MFM; 2024 Apr; 6(4):101337. PubMed ID: 38447673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating the Risk of Paroxysmal Atrial Fibrillation in Noncardioembolic Ischemic Stroke Using Artificial Intelligence-Enabled ECG Algorithm.
    Han C; Kwon O; Chang M; Joo S; Lee Y; Lee JS; Hong JM; Lee SJ; Yoon D
    Front Cardiovasc Med; 2022; 9():865852. PubMed ID: 35463788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of the Presence of Ventricular Fibrillation From a Brugada Electrocardiogram Using Artificial Intelligence.
    Nakamura T; Aiba T; Shimizu W; Furukawa T; Sasano T
    Circ J; 2023 Jun; 87(7):1007-1014. PubMed ID: 36372400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving detection of obstructive coronary artery disease with an artificial intelligence-enabled electrocardiogram algorithm.
    Lee YH; Hsieh MT; Chang CC; Tsai YL; Chou RH; Lu HH; Huang PH
    Atherosclerosis; 2023 Sep; 381():117238. PubMed ID: 37607462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Importance of external validation and subgroup analysis of artificial intelligence in the detection of low ejection fraction from electrocardiograms.
    Yagi R; Goto S; Katsumata Y; MacRae CA; Deo RC
    Eur Heart J Digit Health; 2022 Dec; 3(4):654-657. PubMed ID: 36710903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of Non-invasive Detection of Hyperkalemia by Artificial Intelligence Enhanced Electrocardiography in High Acuity Settings.
    Harmon DM; Liu K; Dugan J; Jentzer JC; Attia ZI; Friedman PA; Dillon JJ
    Clin J Am Soc Nephrol; 2024 Jun; ():. PubMed ID: 38905219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel electrocardiographic criteria may render possible the more accurate recognition of cardiac amyloidosis.
    Vereckei A; Katona G; Szénási G; Vidács LD; Földeák D; Takács H; Nagy V; Sepp R
    ESC Heart Fail; 2024 Apr; 11(2):1030-1038. PubMed ID: 38243379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pediatric ECG-Based Deep Learning to Predict Left Ventricular Dysfunction and Remodeling.
    Mayourian J; La Cava WG; Vaid A; Nadkarni GN; Ghelani SJ; Mannix R; Geva T; Dionne A; Alexander ME; Duong SQ; Triedman JK
    Circulation; 2024 Mar; 149(12):917-931. PubMed ID: 38314583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comprehensive artificial intelligence-enabled electrocardiogram interpretation program.
    Kashou AH; Ko WY; Attia ZI; Cohen MS; Friedman PA; Noseworthy PA
    Cardiovasc Digit Health J; 2020; 1(2):62-70. PubMed ID: 35265877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Left ventricular systolic dysfunction predicted by artificial intelligence using the electrocardiogram in Chagas disease patients-The SaMi-Trop cohort.
    Brito BOF; Attia ZI; Martins LNA; Perel P; Nunes MCP; Sabino EC; Cardoso CS; Ferreira AM; Gomes PR; Luiz Pinho Ribeiro A; Lopez-Jimenez F
    PLoS Negl Trop Dis; 2021 Dec; 15(12):e0009974. PubMed ID: 34871321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The prognostic value of artificial intelligence to predict cardiac amyloidosis in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement.
    Pereyra Pietri M; Farina JM; Mahmoud AK; Scalia IG; Galasso F; Killian ME; Suppah M; Kenyon CR; Koepke LM; Padang R; Chao CJ; Sweeney JP; Fortuin FD; Eleid MF; Sell-Dottin KA; Steidley DE; Scott LR; Fonseca R; Lopez-Jimenez F; Attia ZI; Dispenzieri A; Grogan M; Rosenthal JL; Arsanjani R; Ayoub C
    Eur Heart J Digit Health; 2024 May; 5(3):295-302. PubMed ID: 38774378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial Intelligence-Enabled Model for Early Detection of Left Ventricular Hypertrophy and Mortality Prediction in Young to Middle-Aged Adults.
    Liu CM; Hsieh ME; Hu YF; Wei TY; Wu IC; Chen PF; Lin YJ; Higa S; Yagi N; Chen SA; Tseng VS
    Circ Cardiovasc Qual Outcomes; 2022 Aug; 15(8):e008360. PubMed ID: 35959675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tandem deep learning and logistic regression models to optimize hypertrophic cardiomyopathy detection in routine clinical practice.
    Maanja M; Noseworthy PA; Geske JB; Ackerman MJ; Arruda-Olson AM; Ommen SR; Attia ZI; Friedman PA; Siontis KC
    Cardiovasc Digit Health J; 2022 Dec; 3(6):289-296. PubMed ID: 36589312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.