BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38639023)

  • 1. Surface-Enhanced Raman Scattering Sensors Employing a Nanoparticle-On-Liquid-Mirror (NPoLM) Architecture.
    Datta S; Vasini S; Miao X; Liu PQ
    Small Methods; 2024 Apr; ():e2400119. PubMed ID: 38639023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-Metal-Based Nanophotonic Structures for High-Performance SEIRA Sensing.
    Miao X; Luk TS; Liu PQ
    Adv Mater; 2022 Mar; 34(10):e2107950. PubMed ID: 34991178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas.
    Kanehira Y; Tapio K; Wegner G; Kogikoski S; Rüstig S; Prietzel C; Busch K; Bald I
    ACS Nano; 2023 Nov; 17(21):21227-21239. PubMed ID: 37847540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.
    Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J
    Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.
    Zhao X; Xue J; Mu Z; Huang Y; Lu M; Gu Z
    Biosens Bioelectron; 2015 Oct; 72():268-74. PubMed ID: 25988995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing.
    Qu LL; Song QX; Li YT; Peng MP; Li DW; Chen LX; Fossey JS; Long YT
    Anal Chim Acta; 2013 Aug; 792():86-92. PubMed ID: 23910972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of surface enhanced Raman scattering active hotspot using near field scanning optical microscopy.
    Hossain MK
    Sci Rep; 2024 May; 14(1):10559. PubMed ID: 38719923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch.
    Gupta P; Luan J; Wang Z; Cao S; Bae SH; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37939-37946. PubMed ID: 31525866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman scattering induced by the coupling of the guided mode with localized surface plasmon resonances.
    Wu S; Shen Y; Jin C
    Nanoscale; 2019 Aug; 11(30):14164-14173. PubMed ID: 31265044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ electrochemical regeneration of nanogap hotspots for continuously reusable ultrathin SERS sensors.
    Sibug-Torres SM; Grys DB; Kang G; Niihori M; Wyatt E; Spiesshofer N; Ruane A; de Nijs B; Baumberg JJ
    Nat Commun; 2024 Mar; 15(1):2022. PubMed ID: 38448412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breaking the Affinity Limit with Dual-Phase-Accessible Hotspot for Ultrahigh Raman Scattering of Nonadsorptive Molecules.
    Su M; Wang C; Wang T; Jiang Y; Xu Y; Liu H
    Anal Chem; 2020 May; 92(10):6941-6948. PubMed ID: 32329602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds.
    Wang Z; Zhou W; Yang M; Yang Y; Hu J; Qin C; Zhang G; Liu S; Chen R; Xiao L
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Organic Framework-Enabled Trapping of Volatile Organic Compounds into Plasmonic Nanogaps for Surface-Enhanced Raman Scattering Detection.
    Liu Y; Chui KK; Fang Y; Wen S; Zhuo X; Wang J
    ACS Nano; 2024 Apr; 18(17):11234-11244. PubMed ID: 38630523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations.
    Solís DM; Taboada JM; Obelleiro F; Liz-Marzán LM; García de Abajo FJ
    ACS Photonics; 2017 Feb; 4(2):329-337. PubMed ID: 28239616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized ratiometric surface-enhanced Raman scattering biosensor for okadaic acid in food based on Au-triggered signal amplification.
    Wei W; Wu J; Hassan MM; Jiao T; Xu Y; Ding Z; Li H; Chen Q
    Anal Chim Acta; 2024 Jun; 1310():342705. PubMed ID: 38811142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo and ex vivo applications of gold nanoparticles for biomedical SERS imagingi.
    Yigit MV; Medarova Z
    Am J Nucl Med Mol Imaging; 2012; 2(2):232-41. PubMed ID: 23133814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.
    Israelsen ND; Wooley D; Hanson C; Vargis E
    J Biol Eng; 2016; 10():2. PubMed ID: 26751120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.