BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38639091)

  • 1. Probing the thermoelectric properties of aluminium-doped copper iodide.
    Venkata Ramana TV; Battabyal M; Kumar S; Satapathy DK; Kumar R
    Phys Chem Chem Phys; 2024 May; 26(17):13287-13299. PubMed ID: 38639091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoelectric properties of Ag-doped CuI: a temperature dependent optical phonon study.
    Kumar S; Battabyal M; K S; Satapathy DK
    Phys Chem Chem Phys; 2022 Oct; 24(39):24228-24237. PubMed ID: 36169015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms.
    Han MK; Jin Y; Lee DH; Kim SJ
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29072613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon transport and thermoelectric properties of semiconducting Bi
    Rashid Z; Nissimagoudar AS; Li W
    Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film.
    Yang C; Souchay D; Kneiß M; Bogner M; Wei HM; Lorenz M; Oeckler O; Benstetter G; Fu YQ; Grundmann M
    Nat Commun; 2017 Jul; 8():16076. PubMed ID: 28681842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal Synthesis of Te-Doped Bi Nanoparticles: Low-Temperature Charge Transport and Thermoelectric Properties.
    Gu DH; Jo S; Jeong H; Ban HW; Park SH; Heo SH; Kim F; Jang JI; Lee JE; Son JS
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19143-19151. PubMed ID: 28508649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi.
    Srinivasan B; Boussard-Pledel C; Dorcet V; Samanta M; Biswas K; Lefèvre R; Gascoin F; Cheviré F; Tricot S; Reece M; Bureau B
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Thermoelectric Properties of SrTiO
    Sikam P; Thirayatorn R; Kaewmaraya T; Thongbai P; Moontragoon P; Ikonic Z
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of Carrier Concentration Regulation and High Band Degeneracy for Enhanced Thermoelectric Performance of Cu
    Zhang D; Yang J; Jiang Q; Zhou Z; Li X; Xin J; Basit A; Ren Y; He X; Chu W; Hou J
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28558-28565. PubMed ID: 28792200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized Thermoelectric Properties of Sulfide Compound Bi
    Liang C; Jabar B; Liu C; Chen Y; Zheng Z; Fan P; Li F
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling the temperature-dependent thermoelectric properties of the undoped and Na-doped monolayer SnSe allotropes: a comparative study.
    Shi HL; Han QZ; Yang J; Gong LJ; Ren YH; Zhao YH; Yang H; Liu QH; Jiang ZT
    Nanotechnology; 2024 Feb; 35(19):. PubMed ID: 38306692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Co-doping and Microstructure on Charge Carrier Energy Filtering in Thermoelectric Titanium-Doped Zinc Aluminum Oxide.
    Gayner C; Natanzon Y; Amouyal Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4035-4050. PubMed ID: 35006673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Enhancement in Phonon Scattering Leads to a High Thermoelectric Figure-of-Merit in Graphene Oxide-Encapsulated ZnO Nanocomposites.
    Biswas S; Singh S; Singh S; Chattopadhyay S; De Silva KKH; Yoshimura M; Mitra J; Kamble VB
    ACS Appl Mater Interfaces; 2021 May; 13(20):23771-23786. PubMed ID: 34000188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Ag-S-Te System with Promising Room-Temperature Thermoelectric Performance.
    Li Z; Zhang J; Luo P; Chen J; Huang B; Sun Y; Luo J
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):33605-33611. PubMed ID: 37392426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible Charge Density Wave and Enhancement of Thermoelectric Properties at Mild-Temperature Range in n-Type CuI-Doped Bi
    Cho H; Yun JH; Kim JH; Back SY; Lee HS; Kim SJ; Byeon S; Jin H; Rhyee JS
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):925-933. PubMed ID: 31850742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Band Convergence and Ultra-Low Thermal Conductivity Lead to High Thermoelectric Performance in SnTe.
    Pathak R; Sarkar D; Biswas K
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17686-17692. PubMed ID: 34105218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effect of band convergence and carrier transport on enhancing the thermoelectric performance of Ga doped Cu
    Sarkar S; Sarswat PK; Saini S; Mele P; Free ML
    Sci Rep; 2019 Jun; 9(1):8180. PubMed ID: 31160607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple approaches of band engineering and mass fluctuation of solution-processed n-type Re-doped MoS
    Jenisha MA; Kavirajan S; Harish S; Kamalakannan S; Archana J; Senthil Kumar E; Wakiya N; Navaneethan M
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1150-1165. PubMed ID: 37788583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of thermoelectric properties over a wide temperature range by lattice disorder and chemical potential tuning in a (CuI)
    Cho H; Back SY; Kim JH; Inturu O; Lee HS; Rhyee JS
    RSC Adv; 2019 Jan; 9(8):4190-4197. PubMed ID: 35520183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.