These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38639318)

  • 1. Potential energy landscape of a flexible water model: Equation of state, configurational entropy, and Adam-Gibbs relationship.
    Eltareb A; Lopez GE; Giovambattista N
    J Chem Phys; 2024 Apr; 160(15):. PubMed ID: 38639318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear quantum effects on the thermodynamic, structural, and dynamical properties of water.
    Eltareb A; Lopez GE; Giovambattista N
    Phys Chem Chem Phys; 2021 Mar; 23(11):6914-6928. PubMed ID: 33729222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of a liquid-liquid phase transition in H[Formula: see text]O and D[Formula: see text]O from path-integral molecular dynamics simulations.
    Eltareb A; Lopez GE; Giovambattista N
    Sci Rep; 2022 Apr; 12(1):6004. PubMed ID: 35397618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Adam-Gibbs relation and the TIP4P/2005 model of water.
    Handle PH; Sciortino F
    Mol Phys; 2018; 116(21-22):3366-3371. PubMed ID: 30338319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Harmonic and Gaussian Approximations in the Potential Energy Landscape Formalism for Quantum Liquids.
    Zhou Y; Lopez GE; Giovambattista N
    J Chem Theory Comput; 2024 Mar; 20(5):1847-1861. PubMed ID: 38323779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glass polymorphism in TIP4P/2005 water: A description based on the potential energy landscape formalism.
    Handle PH; Sciortino F; Giovambattista N
    J Chem Phys; 2019 Jun; 150(24):244506. PubMed ID: 31255050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear quantum effects in water clusters: the role of the molecular flexibility.
    González BS; Noya EG; Vega C; Sesé LM
    J Phys Chem B; 2010 Feb; 114(7):2484-92. PubMed ID: 20121175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the potential energy landscape and the dynamic crossover in a water-like monatomic liquid with a liquid-liquid phase transition.
    Sun G; Xu L; Giovambattista N
    J Chem Phys; 2017 Jan; 146(1):014503. PubMed ID: 28063451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the absolute thermodynamics of water from computer simulations: a comparison of first-principles molecular dynamics, reactive and empirical force fields.
    Pascal TA; Schärf D; Jung Y; Kühne TD
    J Chem Phys; 2012 Dec; 137(24):244507. PubMed ID: 23277945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free energy calculations for a flexible water model.
    Habershon S; Manolopoulos DE
    Phys Chem Chem Phys; 2011 Nov; 13(44):19714-27. PubMed ID: 21887423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing thermodynamic-dynamic relationships for waterlike liquids.
    Johnson ME; Head-Gordon T
    J Chem Phys; 2009 Jun; 130(21):214510. PubMed ID: 19508079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.
    Bauer BA; Patel S
    J Chem Phys; 2009 Aug; 131(8):084709. PubMed ID: 19725623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and Metastability of Liquid Water in a Machine-Learned Coarse-Grained Model with Short-Range Interactions.
    Dhabal D; Sankaranarayanan SKRS; Molinero V
    J Phys Chem B; 2022 Dec; 126(47):9881-9892. PubMed ID: 36383428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the possible locus of the liquid-liquid critical point in real water from studies of supercooled water using the TIP4P/Ice model.
    Espinosa JR; Abascal JLF; Sedano LF; Sanz E; Vega C
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37226991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model.
    Wong J; Jahn DA; Giovambattista N
    J Chem Phys; 2015 Aug; 143(7):074501. PubMed ID: 26298139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relation between molecular dynamics and configurational entropy in room temperature ionic liquids: Test of Adam-Gibbs model.
    Cheng S; Musiał M; Wojnarowska Z; Paluch M
    J Chem Phys; 2020 Mar; 152(9):091101. PubMed ID: 33480719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel approach to numerical measurements of the configurational entropy in supercooled liquids.
    Berthier L; Coslovich D
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11668-72. PubMed ID: 25071188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Paramagnetic Resonance Measurements of Four Nitroxide Probes in Supercooled Water Explained by Molecular Dynamics Simulations.
    McMillin PJ; Alegrete M; Peric M; Luchko T
    J Phys Chem B; 2020 May; 124(19):3962-3972. PubMed ID: 32301326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical crossover and its connection to the Widom line in supercooled TIP4P/Ice water.
    Lupi L; Vázquez Ramírez B; Gallo P
    J Chem Phys; 2021 Aug; 155(5):054502. PubMed ID: 34364341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competing quantum effects in the dynamics of a flexible water model.
    Habershon S; Markland TE; Manolopoulos DE
    J Chem Phys; 2009 Jul; 131(2):024501. PubMed ID: 19603998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.