These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38639553)

  • 1. Diffusional Electron Transport Coupled to Thermodynamically Driven Electron Transfers in Redox-Conductive Multivariate Metal-Organic Frameworks.
    Li J; Kumar A; Ott S
    J Am Chem Soc; 2024 May; 146(17):12000-12010. PubMed ID: 38639553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Molecular Nature of Redox-Conductive Metal-Organic Frameworks.
    Li J; Ott S
    Acc Chem Res; 2024 Oct; 57(19):2836-2846. PubMed ID: 39288193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochromism in Isoreticular Metal-Organic Framework Thin Films with Record High Coloration Efficiency.
    Kumar A; Li J; Inge AK; Ott S
    ACS Nano; 2023 Nov; 17(21):21595-21603. PubMed ID: 37851935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers.
    Johnson BA; Bhunia A; Fei H; Cohen SM; Ott S
    J Am Chem Soc; 2018 Feb; 140(8):2985-2994. PubMed ID: 29421875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental manifestation of redox-conductivity in metal-organic frameworks and its implication for semiconductor/insulator switching.
    Li J; Kumar A; Johnson BA; Ott S
    Nat Commun; 2023 Jul; 14(1):4388. PubMed ID: 37474545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic Insights into Cation-Coupled Electron Hopping Transport in a Metal-Organic Framework.
    Castner AT; Su H; Svensson Grape E; Inge AK; Johnson BA; Ahlquist MSG; Ott S
    J Am Chem Soc; 2022 Apr; 144(13):5910-5920. PubMed ID: 35325542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the electronic and ionic transport in topologically distinct redox-active metal-organic frameworks in aqueous electrolytes.
    Shen CH; Chen YH; Wang YC; Chang TE; Chen YL; Kung CW
    Phys Chem Chem Phys; 2022 May; 24(17):9855-9865. PubMed ID: 35348567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Diffusional Charge Transport within a Pyrene-Based Hydrogen-Bonded Organic Framework.
    Goswami S; Ma K; Duan J; Kirlikovali KO; Bai J; Hupp JT; Li P; Farha OK
    Langmuir; 2022 Feb; 38(4):1533-1539. PubMed ID: 35049315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Impact of Successive Redox Events in Thin Films of Metal-Organic Frameworks: An Absorptiometric Approach.
    Monnier V; Odobel F; Diring S
    J Am Chem Soc; 2023 Sep; 145(35):19232-19242. PubMed ID: 37615947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic Redox Conductivity within a Metal-Organic Framework Material.
    Goswami S; Hod I; Duan JD; Kung CW; Rimoldi M; Malliakas CD; Palmer RH; Farha OK; Hupp JT
    J Am Chem Soc; 2019 Nov; 141(44):17696-17702. PubMed ID: 31608628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-Active Mixed-Linker Metal-Organic Frameworks with Switchable Semiconductive Characteristics for Tailorable Chemiresistive Sensing.
    Zhou XC; Liu C; Su J; Liu YF; Mu Z; Sun Y; Yang ZM; Yuan S; Ding M; Zuo JL
    Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202211850. PubMed ID: 36636786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges.
    Xu G; Zhu C; Gao G
    Small; 2022 Nov; 18(44):e2203140. PubMed ID: 36050887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Solid-Solution Approach for Redox Active Metal-Organic Frameworks with Tunable Redox Conductivity.
    Mohammad-Pour GS; Hatfield KO; Fairchild DC; Hernandez-Burgos K; Rodríguez-López J; Uribe-Romo FJ
    J Am Chem Soc; 2019 Dec; 141(51):19978-19982. PubMed ID: 31789028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing photovoltages at p-type semiconductors through a redox-active metal-organic framework surface coating.
    Beiler AM; McCarthy BD; Johnson BA; Ott S
    Nat Commun; 2020 Nov; 11(1):5819. PubMed ID: 33199706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Rules for Efficient Charge Transfer in Metal-Organic Framework Films: The Pore Size Effect.
    Cai M; Loague Q; Morris AJ
    J Phys Chem Lett; 2020 Feb; 11(3):702-709. PubMed ID: 31917577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of redox hopping in metal-organic framework electrocatalysis.
    Lin S; Usov PM; Morris AJ
    Chem Commun (Camb); 2018 Jun; 54(51):6965-6974. PubMed ID: 29809219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vapor-Phase Processing of Metal-Organic Frameworks.
    Su P; Tu M; Ameloot R; Li W
    Acc Chem Res; 2022 Jan; 55(2):186-196. PubMed ID: 34958204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical alcohol oxidation by mixed-linker metal-organic frameworks.
    Lin S; Cairnie DR; Davis D; Chakraborty A; Cai M; Morris AJ
    Faraday Discuss; 2021 Feb; 225():371-383. PubMed ID: 33107542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mimicking the Electron Transport Chain and Active Site of [FeFe] Hydrogenases in One Metal-Organic Framework: Factors That Influence Charge Transport.
    Castner AT; Johnson BA; Cohen SM; Ott S
    J Am Chem Soc; 2021 Jun; 143(21):7991-7999. PubMed ID: 34029060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.