These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38639560)

  • 1. Nonconventional Electrochemical Reactions in Rechargeable Lithium-Sulfur Batteries.
    Tan SJ; Feng XX; Wang YH; Guo YG; Xin S
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38639560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic Promoters for Sulfur Cathodes in Lithium-Sulfur Batteries.
    Zhao M; Peng HJ; Li BQ; Huang JQ
    Acc Chem Res; 2024 Feb; ():. PubMed ID: 38319810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoengineering to achieve high efficiency practical lithium-sulfur batteries.
    Cha E; Patel M; Bhoyate S; Prasad V; Choi W
    Nanoscale Horiz; 2020 May; 5(5):808-831. PubMed ID: 32159194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries with Encapsulating Lithium Polysulfide Electrolyte.
    Liu Y; Zhao M; Hou LP; Li Z; Bi CX; Chen ZX; Cheng Q; Zhang XQ; Li BQ; Kaskel S; Huang JQ
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202303363. PubMed ID: 37249483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries.
    Li G; Huang Q; He X; Gao Y; Wang D; Kim SH; Wang D
    ACS Nano; 2018 Feb; 12(2):1500-1507. PubMed ID: 29376330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries.
    Zhao C; Amine K; Xu GL
    Acc Chem Res; 2023 Oct; 56(19):2700-2712. PubMed ID: 37728762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a TiNb
    Zhou X; Zeng P; Yu H; Guo C; Miao C; Guo X; Chen M; Wang X
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1157-1168. PubMed ID: 34962368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability.
    Chen Y; Wang T; Tian H; Su D; Zhang Q; Wang G
    Adv Mater; 2021 Jul; 33(29):e2003666. PubMed ID: 34096100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities.
    Zhao M; Li BQ; Peng HJ; Yuan H; Wei JY; Huang JQ
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12636-12652. PubMed ID: 31490599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: a review.
    Tan J; Liu D; Xu X; Mai L
    Nanoscale; 2017 Dec; 9(48):19001-19016. PubMed ID: 29185576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing a Stable Solid Electrolyte Interphase on Lithium Metal Anodes by Tailoring a Mg Atom Center and the Inner Helmholtz Plane for Lithium-Sulfur Batteries.
    Tan J; Li X; Fang Z; Shen J
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17893-17903. PubMed ID: 36996578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.
    Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries.
    Wang J; He YS; Yang J
    Adv Mater; 2015 Jan; 27(3):569-75. PubMed ID: 25256595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shielding Polysulfide Intermediates by an Organosulfur-Containing Solid Electrolyte Interphase on the Lithium Anode in Lithium-Sulfur Batteries.
    Wei JY; Zhang XQ; Hou LP; Shi P; Li BQ; Xiao Y; Yan C; Yuan H; Huang JQ
    Adv Mater; 2020 Sep; 32(37):e2003012. PubMed ID: 32761715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes.
    Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in cathode materials for rechargeable lithium-sulfur batteries.
    Li F; Liu Q; Hu J; Feng Y; He P; Ma J
    Nanoscale; 2019 Sep; 11(33):15418-15439. PubMed ID: 31408082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.