These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38639562)
1. Backscatter measurement of cancellous bone using the ultrasound transit time spectroscopy. Jia Y; Han S; Li B; Liu C; Ta D J Acoust Soc Am; 2024 Apr; 155(4):2670-2686. PubMed ID: 38639562 [TBL] [Abstract][Full Text] [Related]
2. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT. Alomari AH; Wille ML; Langton CM Bone; 2018 Feb; 107():145-153. PubMed ID: 29198979 [TBL] [Abstract][Full Text] [Related]
3. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone. Liu C; Li B; Diwu Q; Li Y; Zhang R; Ta D; Wang W IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2311-2321. PubMed ID: 30575524 [TBL] [Abstract][Full Text] [Related]
4. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy. Wille ML; Langton CM Ultrasonics; 2016 Feb; 65():329-37. PubMed ID: 26455950 [TBL] [Abstract][Full Text] [Related]
5. Ultrasonic backscatter difference measurements of cancellous bone from the human femur: Relation to bone mineral density and microstructure. Hoffmeister BK; Viano AM; Huang J; Fairbanks LC; Ebron SC; Moore JT; Ankersen JP; Huber MT; Diaz AA J Acoust Soc Am; 2018 Jun; 143(6):3642. PubMed ID: 29960442 [TBL] [Abstract][Full Text] [Related]
6. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone. Li Y; Li B; Li Y; Liu C; Xu F; Zhang R; Ta D; Wang W Ultrason Imaging; 2019 Sep; 41(5):271-289. PubMed ID: 31307317 [TBL] [Abstract][Full Text] [Related]
7. Variability in Ultrasound Backscatter Induced by Trabecular Microstructure Deterioration in Cancellous Bone. Chou X; Xu F; Li Y; Liu C; Ta D; Le LH Biomed Res Int; 2018; 2018():4786329. PubMed ID: 29780823 [TBL] [Abstract][Full Text] [Related]
8. Ultrasonic Bone Assessment: Ability of Apparent Backscatter Techniques to Detect Changes in the Microstructure of Human Cancellous Bone. Viano AM; Ankersen JP; Hoffmeister BK; Huang J; Fairbanks LC IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3309-3325. PubMed ID: 34138705 [TBL] [Abstract][Full Text] [Related]
9. Backscatter-difference Measurements of Cancellous Bone Using an Ultrasonic Imaging System. Hoffmeister BK; Smathers MR; Miller CJ; McPherson JA; Thurston CR; Spinolo PL; Lee SR Ultrason Imaging; 2016 Jul; 38(4):285-97. PubMed ID: 26416839 [TBL] [Abstract][Full Text] [Related]
10. Effect of transducer position on ultrasonic backscatter measurements of cancellous bone. Hoffmeister BK; Lawler BC; Viano AM; Mobley J J Acoust Soc Am; 2023 Nov; 154(5):2858-2868. PubMed ID: 37930178 [TBL] [Abstract][Full Text] [Related]
11. Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 mhz. Hoffmeister BK; Johnson DP; Janeski JA; Keedy DA; Steinert BW; Viano AM; Kaste SC IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1442-52. PubMed ID: 18986933 [TBL] [Abstract][Full Text] [Related]
12. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone. Hoffmeister BK; Holt AP; Kaste SC Phys Med Biol; 2011 Oct; 56(19):6243-55. PubMed ID: 21896966 [TBL] [Abstract][Full Text] [Related]
13. Signal of Interest Selection Standard for Ultrasonic Backscatter in Cancellous Bone Evaluation. Liu C; Tang T; Xu F; Ta D; Matsukawa M; Hu B; Wang W Ultrasound Med Biol; 2015 Oct; 41(10):2714-21. PubMed ID: 26210784 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone. Hoffmeister BK; Huber MT; Viano AM; Huang J J Acoust Soc Am; 2018 Feb; 143(2):911. PubMed ID: 29495707 [TBL] [Abstract][Full Text] [Related]
15. Ultrasonic Bone Assessment Using the Backscatter Amplitude Decay Constant. Hoffmeister BK; Gray AJ; Sharp PC; Fairbanks LC; Huang J Ultrasound Med Biol; 2020 Sep; 46(9):2412-2423. PubMed ID: 32553693 [TBL] [Abstract][Full Text] [Related]
16. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function. Hoffmeister BK; Mcpherson JA; Smathers MR; Spinolo PL; Sellers ME IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2115-25. PubMed ID: 26683412 [TBL] [Abstract][Full Text] [Related]
17. Frequency dependence of apparent ultrasonic backscatter from human cancellous bone. Hoffmeister BK Phys Med Biol; 2011 Feb; 56(3):667-83. PubMed ID: 21220842 [TBL] [Abstract][Full Text] [Related]
19. Correlation between the combination of apparent integrated backscatter-spectral centroid shift and bone mineral density. Tang T; Liu C; Xu F; Ta D J Med Ultrason (2001); 2016 Apr; 43(2):167-73. PubMed ID: 26753614 [TBL] [Abstract][Full Text] [Related]
20. Ultrasonic Backscatter Measurements of Human Cortical and Trabecular Bone Densities in a Head-Down Bed-Rest Study. Bi D; Dai Z; Liu D; Wu F; Liu C; Li Y; Li B; Li Z; Li Y; Ta D Ultrasound Med Biol; 2021 Aug; 47(8):2404-2415. PubMed ID: 34052063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]