These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38639569)

  • 1. A robust balancing mechanism for spiking neural networks.
    Politi A; Torcini A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38639569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the dynamics of cerebellar Purkinje cells through the interaction of excitatory and inhibitory feedforward pathways.
    Tang Y; An L; Yuan Y; Pei Q; Wang Q; Liu JK
    PLoS Comput Biol; 2021 Feb; 17(2):e1008670. PubMed ID: 33566820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of dynamical synapses on firing rate activity: a spiking neural network model.
    Khalil R; Moftah MZ; Moustafa AA
    Eur J Neurosci; 2017 Nov; 46(9):2445-2470. PubMed ID: 28921686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-tuning of neural circuits through short-term synaptic plasticity.
    Sussillo D; Toyoizumi T; Maass W
    J Neurophysiol; 2007 Jun; 97(6):4079-95. PubMed ID: 17409166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the Short-Term Dynamics of
    Ghanbari A; Ren N; Keine C; Stoelzel C; Englitz B; Swadlow HA; Stevenson IH
    J Neurosci; 2020 May; 40(21):4185-4202. PubMed ID: 32303648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balanced networks under spike-time dependent plasticity.
    Akil AE; Rosenbaum R; Josić K
    PLoS Comput Biol; 2021 May; 17(5):e1008958. PubMed ID: 33979336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Associative Learning Is Sufficient to Explain the Structural and Dynamical Properties of Local Cortical Circuits.
    Zhang D; Zhang C; Stepanyants A
    J Neurosci; 2019 Aug; 39(35):6888-6904. PubMed ID: 31270161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement Learning in Spiking Neural Networks with Stochastic and Deterministic Synapses.
    Yuan M; Wu X; Yan R; Tang H
    Neural Comput; 2019 Dec; 31(12):2368-2389. PubMed ID: 31614099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike-Timing-dependent plasticity and short-term plasticity jointly control the excitation of Hebbian plasticity without weight constraints in neural networks.
    Fernando S; Yamada K
    Comput Intell Neurosci; 2012; 2012():968272. PubMed ID: 23365563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory connectivity defines the realm of excitatory plasticity.
    Mongillo G; Rumpel S; Loewenstein Y
    Nat Neurosci; 2018 Oct; 21(10):1463-1470. PubMed ID: 30224809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
    Ocker GK; Litwin-Kumar A; Doiron B
    PLoS Comput Biol; 2015 Aug; 11(8):e1004458. PubMed ID: 26291697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuron as a reward-modulated combinatorial switch and a model of learning behavior.
    Rvachev MM
    Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G; Curti E; Romani S; Amit DJ
    Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagating waves can explain irregular neural dynamics.
    Keane A; Gong P
    J Neurosci; 2015 Jan; 35(4):1591-605. PubMed ID: 25632135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term relationships between synaptic tenacity, synaptic remodeling, and network activity.
    Minerbi A; Kahana R; Goldfeld L; Kaufman M; Marom S; Ziv NE
    PLoS Biol; 2009 Jun; 7(6):e1000136. PubMed ID: 19554080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-existence of synaptic plasticity and metastable dynamics in a spiking model of cortical circuits.
    Yang X; La Camera G
    PLoS Comput Biol; 2024 Jul; 20(7):e1012220. PubMed ID: 38950068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic balancing: A biologically plausible local learning rule that provably increases neural network noise robustness without sacrificing task performance.
    Stock CH; Harvey SE; Ocko SA; Ganguli S
    PLoS Comput Biol; 2022 Sep; 18(9):e1010418. PubMed ID: 36121844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.