BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38639574)

  • 1. Selective Hydrogenation of Diethyl Malonate to 1,3-Propanediol Over Ga-Promoted Cu/SiO
    Zhang J; Shi H; Yang J; Yao X; Liu H; Li X; Gao G; Li F; Huang Z
    Chem Asian J; 2024 Jun; 19(11):e202400292. PubMed ID: 38639574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective hydrogenolysis of raw glycerol to 1,2-propanediol over Cu-ZnO catalysts in fixed-bed reactor.
    Gao Q; Xu B; Tong Q; Fan Y
    Biosci Biotechnol Biochem; 2016; 80(2):215-20. PubMed ID: 26428060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ceria Promoted Cu-Ni/SiO
    Mukherjee D; Singuru R; Venkataswamy P; Damma D; Reddy BM
    ACS Omega; 2019 Mar; 4(3):4770-4778. PubMed ID: 31459661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boron Modified Bifunctional Cu/SiO
    Yang D; Ye R; Lin L; Guo R; Zhao P; Yin Y; Cheng W; Yuan W; Yao Y
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation.
    Delannoy L; Thrimurthulu G; Reddy PS; Méthivier C; Nelayah J; Reddy BM; Ricolleau C; Louis C
    Phys Chem Chem Phys; 2014 Dec; 16(48):26514-27. PubMed ID: 25051298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-effective promoter-doped Cu-based bimetallic catalysts for the selective hydrogenation of C
    Zhang R; Zhao B; He L; Wang A; Wang B
    Phys Chem Chem Phys; 2018 Jun; 20(25):17487-17496. PubMed ID: 29911703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Synergistic Co/CoO Interface to Enhance Hydrogenation Activity of Ethyl Lactate to 1,2-Propanediol.
    Li C; Wang J; Zhao J; Gao G; Wu KH; Su BJ; Chen JM; Xi Y; Huang Z; Qiao Y; Li F
    Chem Asian J; 2024 Mar; 19(6):e202301103. PubMed ID: 38288641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogenation of Lactic Acid to 1,2-Propanediol over Ru-Based Catalysts.
    Liu K; Huang X; Pidko EA; Hensen EJM
    ChemCatChem; 2018 Feb; 10(4):810-817. PubMed ID: 29541255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vapour-Phase Selective Hydrogenation of γ-Valerolactone to 2-Methyltetrahydrofuran Biofuel over Silica-Supported Copper Catalysts.
    Pothu R; Challa P; Rajesh R; Boddula R; Balaga R; Balla P; Perugopu V; Radwan AB; Abdullah AM; Al-Qahtani N
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Calcination Atmosphere on the Performance of Cu/Al
    Gao Y; Yi W; Yang J; Jiang K; Yang T; Li Z; Zhang M; Liu Z; Wu B
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu-Re/TiO
    Liu Y; Liu K; Zhang M; Zhang K; Ma J; Xiao S; Wei Z; Deng S
    RSC Adv; 2021 Dec; 12(1):602-610. PubMed ID: 35424528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO
    Müller A; Comas-Vives A; Copéret C
    Chem Sci; 2022 Nov; 13(45):13442-13458. PubMed ID: 36507169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supported Cu Nanoparticles as Selective and Stable Catalysts for the Gas Phase Hydrogenation of 1,3-Butadiene in Alkene-Rich Feeds.
    Totarella G; Beerthuis R; Masoud N; Louis C; Delannoy L; de Jongh PE
    J Phys Chem C Nanomater Interfaces; 2021 Jan; 125(1):366-375. PubMed ID: 33488906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ga-Promoted CuCo-Based Catalysts for Efficient CO
    Zhang G; Fan G; Zheng L; Li F
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35569-35580. PubMed ID: 35894691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Effect of a Boron-Doped Carbon-Nanotube-Supported Cu Catalyst for Selective Hydrogenation of Dimethyl Oxalate to Ethanol.
    Ai P; Tan M; Yamane N; Liu G; Fan R; Yang G; Yoneyama Y; Yang R; Tsubaki N
    Chemistry; 2017 Jun; 23(34):8252-8261. PubMed ID: 28421629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient TiO
    Mondach W; Chanklang S; Somchuea P; Witoon T; Chareonpanich M; Faungnawakij K; Sohn H; Seubsai A
    Sci Rep; 2021 Nov; 11(1):23042. PubMed ID: 34845268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Hydrogenation of Dimethyl Oxalate to Methyl Glycolate over Boron-Modified Ag/SiO
    Cheng S; Meng T; Mao D; Guo X; Yu J
    ACS Omega; 2022 Nov; 7(45):41224-41235. PubMed ID: 36406499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning CO
    Reddy KP; Kim D; Hong S; Kim KJ; Ryoo R; Park JY
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36763569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Spectroscopic and Computational Study of Nitrobenzene Activation on Non-Noble Metals-Based Mono- and Bimetallic Catalysts.
    Millán R; Soriano MD; Cerdá Moreno C; Boronat M; Concepción P
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Active CuO
    Jin R; Easa J; O'Brien CP
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38213-38220. PubMed ID: 34346672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.