BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38639582)

  • 1. Molecular drilling to combat
    Upadhyay A; Pal D; Kumar A
    Expert Opin Ther Targets; 2024 Apr; 28(4):323-334. PubMed ID: 38639582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering Target Protein Cascade in
    Upadhyay A; Pal D; Kumar A
    Curr Genomics; 2023 Oct; 24(2):100-109. PubMed ID: 37994324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle Fullerene (C60) demonstrated stable binding with antibacterial potential towards probable targets of drug resistant Salmonella typhi - a computational perspective and in vitro investigation.
    Skariyachan S; Parveen A; Garka S
    J Biomol Struct Dyn; 2017 Dec; 35(16):3449-3468. PubMed ID: 27817242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrogating Salmonella Typhi biofilm formation and dynamics to understand antimicrobial resistance.
    Upadhyay A; Pal D; Kumar A
    Life Sci; 2024 Feb; 339():122418. PubMed ID: 38219918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zingerone inhibits biofilm formation and enhances antibiotic efficacy against Salmonella biofilm.
    Kharga K; Dhar I; Kashyap S; Sengupta S; Kumar D; Kumar L
    World J Microbiol Biotechnol; 2023 Aug; 39(10):268. PubMed ID: 37528258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eugenol derivatives prospectively inhibit l-asparaginase: A heady target protein of Salmonella typhimurium.
    Vimal A; Jha A; Kumar A
    Microb Pathog; 2018 Jan; 114():8-16. PubMed ID: 29138086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Bile-Mediated Regulation of
    González JF; Tucker L; Fitch J; Wetzel A; White P; Gunn JS
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 30936374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiquorum sensing and antibiofilm potential of biosynthesized silver nanoparticles of Myristica fragrans seed extract against MDR Salmonella enterica serovar Typhi isolates from asymptomatic typhoid carriers and typhoid patients.
    Balakrishnan S; Ibrahim KS; Duraisamy S; Sivaji I; Kandasamy S; Kumarasamy A; Kumar NS
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):2844-2856. PubMed ID: 31836973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MurC ligase of multi-drug resistant Salmonella Typhi can be inhibited by novel Curcumin derivative: Evidence from molecular docking and dynamics simulations.
    Debroy R; Ramaiah S
    Int J Biochem Cell Biol; 2022 Oct; 151():106279. PubMed ID: 35985453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two novel roles of buffalo milk lactoperoxidase, antibiofilm agent and immunomodulator against multidrug resistant Salmonella enterica serovar Typhi and Listeria monocytogenes.
    Mahdi L; Musafer H; Zwain L; Salman I; Al-Joofy I; Rasool K; Mussa A; Al-Kakei S; Al-Oqaili R; Al-Alak S; Chaloob A; Abdulkareem A; Hussein B; Mahdi N; Taher N
    Microb Pathog; 2017 Aug; 109():221-227. PubMed ID: 28587762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics study for identification of putative drug targets in Salmonella typhi Ty2.
    Batool N; Waqar M; Batool S
    Gene; 2016 Jan; 576(1 Pt 3):544-59. PubMed ID: 26555890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulatory control of curli (csg) gene expression in Salmonella enterica serovar Typhi requires more than a functional CsgD regulator.
    Ou C; Dozois CM; Daigle F
    Sci Rep; 2023 Sep; 13(1):14905. PubMed ID: 37689734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant nutraceuticals (Quercetrin and Afzelin) capped silver nanoparticles exert potent antibiofilm effect against food borne pathogen Salmonella enterica serovar Typhi and curtail planktonic growth in zebrafish infection model.
    Lotha R; Sundaramoorthy NS; Shamprasad BR; Nagarajan S; Sivasubramanian A
    Microb Pathog; 2018 Jul; 120():109-118. PubMed ID: 29715535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro Salmonella typhi biofilm formation on gallstones and its disruption by Manuka honey.
    Hannan A; Bajwa AE; Riaz S; Arshad U; Saleem S; Bajwa UI
    Pak J Pharm Sci; 2018 Jan; 31(1):129-135. PubMed ID: 29348094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural phytocompounds physalin D, withaferin a and withanone target L-asparaginase of
    Sharma D; Saini R; Mishra A
    J Biomol Struct Dyn; 2023 Apr; 41(7):2645-2659. PubMed ID: 35132949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug repurposing approach to target FtsZ cell division protein from Salmonella Typhi.
    Naz F; Mashkoor M; Sharma P; Haque MA; Kapil A; Kumar M; Kaur P; Abdul Samath E
    Int J Biol Macromol; 2020 Sep; 159():1073-1083. PubMed ID: 32417543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Salmonella enterica biofilm formation using small-molecule adenosine mimetics.
    Koopman JA; Marshall JM; Bhatiya A; Eguale T; Kwiek JJ; Gunn JS
    Antimicrob Agents Chemother; 2015 Jan; 59(1):76-84. PubMed ID: 25313216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibiogram, Virulence Genes, and Biofilm-Forming Ability of Clinical
    Krishna D; Dhanashree B
    Microb Drug Resist; 2021 Jul; 27(7):871-878. PubMed ID: 33305986
    [No Abstract]   [Full Text] [Related]  

  • 19. Preparation of self-assembled platinum nanoclusters to combat Salmonella typhi infection and inhibit biofilm formation.
    Subramaniyan SB; Ramani A; Ganapathy V; Anbazhagan V
    Colloids Surf B Biointerfaces; 2018 Nov; 171():75-84. PubMed ID: 30015141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic landscape of the emerging XDR Salmonella Typhi for mining druggable targets clpP, hisH, folP and gpmI and screening of novel TCM inhibitors, molecular docking and simulation analyses.
    Afzal M; Hassan SS; Sohail S; Camps I; Khan Y; Basharat Z; Karim A; Aurongzeb M; Irfan M; Salman M; Morel CM
    BMC Microbiol; 2023 Jan; 23(1):25. PubMed ID: 36681806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.