BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38640062)

  • 1. Evolution of the catalytic mechanism at the dawn of the Baeyer-Villiger monooxygenases.
    Yang G; Pećanac O; Wijma HJ; Rozeboom HJ; de Gonzalo G; Fraaije MW; Mascotti ML
    Cell Rep; 2024 May; 43(5):114130. PubMed ID: 38640062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of Two Native Baeyer-Villiger Monooxygenases for Asymmetric Synthesis of Bulky Chiral Sulfoxides.
    Zhang Y; Liu F; Xu N; Wu YQ; Zheng YC; Zhao Q; Lin G; Yu HL; Xu JH
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29752270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal BVMOs as alternatives to cyclohexanone monooxygenase.
    Mthethwa KS; Kassier K; Engel J; Kara S; Smit MS; Opperman DJ
    Enzyme Microb Technol; 2017 Nov; 106():11-17. PubMed ID: 28859804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Baeyer-Villiger monooxygenases: recent advances and future challenges.
    Torres Pazmiño DE; Dudek HM; Fraaije MW
    Curr Opin Chem Biol; 2010 Apr; 14(2):138-44. PubMed ID: 20015679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations.
    Manenda MS; Picard MÈ; Zhang L; Cyr N; Zhu X; Barma J; Pascal JM; Couture M; Zhang C; Shi R
    J Biol Chem; 2020 Apr; 295(14):4709-4722. PubMed ID: 32111738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the set of rhodococcal Baeyer-Villiger monooxygenases by high-throughput cloning, expression and substrate screening.
    Riebel A; Dudek HM; de Gonzalo G; Stepniak P; Rychlewski L; Fraaije MW
    Appl Microbiol Biotechnol; 2012 Sep; 95(6):1479-89. PubMed ID: 22218769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution study of the Baeyer-Villiger monooxygenases enzyme family: functional importance of the highly conserved residues.
    Rebehmed J; Alphand V; de Berardinis V; de Brevern AG
    Biochimie; 2013 Jul; 95(7):1394-402. PubMed ID: 23523772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase.
    Beier A; Bordewick S; Genz M; Schmidt S; van den Bergh T; Peters C; Joosten HJ; Bornscheuer UT
    Chembiochem; 2016 Dec; 17(24):2312-2315. PubMed ID: 27735116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a Baeyer-Villiger monooxygenase.
    Malito E; Alfieri A; Fraaije MW; Mattevi A
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13157-62. PubMed ID: 15328411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of conformational flexibility in Baeyer-Villiger monooxygenase catalysis and structure.
    Yachnin BJ; Lau PCK; Berghuis AM
    Biochim Biophys Acta; 2016 Dec; 1864(12):1641-1648. PubMed ID: 27570148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts.
    de Gonzalo G; Mihovilovic MD; Fraaije MW
    Chembiochem; 2010 Nov; 11(16):2208-31. PubMed ID: 20936617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations.
    Bordewick S; Beier A; Balke K; Bornscheuer UT
    Enzyme Microb Technol; 2018 Feb; 109():31-42. PubMed ID: 29224624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Origin and Evolution of Baeyer-Villiger Monooxygenases (BVMOs): An Ancestral Family of Flavin Monooxygenases.
    Mascotti ML; Lapadula WJ; Juri Ayub M
    PLoS One; 2015; 10(7):e0132689. PubMed ID: 26161776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Baeyer-Villiger monooxygenases in the biosynthesis of microbial secondary metabolites].
    Li Y; Yang X; Deng Z; Zhu D
    Sheng Wu Gong Cheng Xue Bao; 2019 Mar; 35(3):351-362. PubMed ID: 30912344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of Baeyer-Villiger monooxygenase MtmOIV, the key enzyme of the mithramycin biosynthetic pathway .
    Beam MP; Bosserman MA; Noinaj N; Wehenkel M; Rohr J
    Biochemistry; 2009 Jun; 48(21):4476-87. PubMed ID: 19364090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization.
    Orru R; Dudek HM; Martinoli C; Torres Pazmiño DE; Royant A; Weik M; Fraaije MW; Mattevi A
    J Biol Chem; 2011 Aug; 286(33):29284-29291. PubMed ID: 21697090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein engineering of stereoselective Baeyer-Villiger monooxygenases.
    Zhang ZG; Parra LP; Reetz MT
    Chemistry; 2012 Aug; 18(33):10160-72. PubMed ID: 22807240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a new Baeyer-Villiger monooxygenase and conversion to a solely N-or S-oxidizing enzyme by a single R292 mutation.
    Catucci G; Zgrablic I; Lanciani F; Valetti F; Minerdi D; Ballou DP; Gilardi G; Sadeghi SJ
    Biochim Biophys Acta; 2016 Sep; 1864(9):1177-1187. PubMed ID: 27344049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baeyer-Villiger oxidations: biotechnological approach.
    Bučko M; Gemeiner P; Schenkmayerová A; Krajčovič T; Rudroff F; Mihovilovič MD
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6585-6599. PubMed ID: 27328941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of methyl propanoate by Baeyer-Villiger monooxygenases.
    van Beek HL; Winter RT; Eastham GR; Fraaije MW
    Chem Commun (Camb); 2014 Nov; 50(86):13034-6. PubMed ID: 25227202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.