These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38640062)

  • 61. Structural insights into a flavin-dependent dehalogenase HadA explain catalysis and substrate inhibition via quadruple π-stacking.
    Pimviriyakul P; Jaruwat A; Chitnumsub P; Chaiyen P
    J Biol Chem; 2021 Aug; 297(2):100952. PubMed ID: 34252455
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular insight into substrate recognition and catalysis of Baeyer-Villiger monooxygenase MtmOIV, the key frame-modifying enzyme in the biosynthesis of anticancer agent mithramycin.
    Bosserman MA; Downey T; Noinaj N; Buchanan SK; Rohr J
    ACS Chem Biol; 2013 Nov; 8(11):2466-77. PubMed ID: 23992662
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases.
    Alphand V; Carrea G; Wohlgemuth R; Furstoss R; Woodley JM
    Trends Biotechnol; 2003 Jul; 21(7):318-23. PubMed ID: 12837617
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pseudomonad cyclopentadecanone monooxygenase displaying an uncommon spectrum of Baeyer-Villiger oxidations of cyclic ketones.
    Iwaki H; Wang S; Grosse S; Bergeron H; Nagahashi A; Lertvorachon J; Yang J; Konishi Y; Hasegawa Y; Lau PC
    Appl Environ Microbiol; 2006 Apr; 72(4):2707-20. PubMed ID: 16597975
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An unprecedented NADPH domain conformation in lysine monooxygenase NbtG provides insights into uncoupling of oxygen consumption from substrate hydroxylation.
    Binda C; Robinson RM; Martin Del Campo JS; Keul ND; Rodriguez PJ; Robinson HH; Mattevi A; Sobrado P
    J Biol Chem; 2015 May; 290(20):12676-88. PubMed ID: 25802330
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions.
    Iwaki H; Grosse S; Bergeron H; Leisch H; Morley K; Hasegawa Y; Lau PC
    Appl Environ Microbiol; 2013 May; 79(10):3282-93. PubMed ID: 23524667
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Structure of the Antibiotic Deactivating, N-hydroxylating Rifampicin Monooxygenase.
    Liu LK; Abdelwahab H; Martin Del Campo JS; Mehra-Chaudhary R; Sobrado P; Tanner JJ
    J Biol Chem; 2016 Oct; 291(41):21553-21562. PubMed ID: 27557658
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A generic, whole-cell-based screening method for Baeyer-Villiger monooxygenases.
    Dudek HM; Popken P; van Bloois E; Duetz WA; Fraaije MW
    J Biomol Screen; 2013 Jul; 18(6):678-87. PubMed ID: 23536548
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structures of the Apo and FAD-bound forms of 2-hydroxybiphenyl 3-monooxygenase (HbpA) locate activity hotspots identified by using directed evolution.
    Jensen CN; Mielke T; Farrugia JE; Frank A; Man H; Hart S; Turkenburg JP; Grogan G
    Chembiochem; 2015 Apr; 16(6):968-76. PubMed ID: 25737306
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hot spots for the protein engineering of Baeyer-Villiger monooxygenases.
    Balke K; Beier A; Bornscheuer UT
    Biotechnol Adv; 2018; 36(1):247-263. PubMed ID: 29174001
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Baeyer-Villiger Monooxygenases and Their Mechanism of Oxygen Activation: From Microbes to Humans.
    Fiorentini F; Nicoll CR; Mattevi A
    Biochemistry; 2021 Nov; 60(46):3419-3421. PubMed ID: 33974412
    [No Abstract]   [Full Text] [Related]  

  • 72. Characterization of the flavin monooxygenase involved in biosynthesis of the antimalarial FR-900098.
    Nguyen K; DeSieno MA; Bae B; Johannes TW; Cobb RE; Zhao H; Nair SK
    Org Biomol Chem; 2019 Feb; 17(6):1506-1518. PubMed ID: 30681110
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Identification two key residues at the intersection of domains of a thioether monooxygenase for improving its sulfoxidation performance.
    Ren SM; Liu F; Wu YQ; Chen Q; Zhang ZJ; Yu HL; Xu JH
    Biotechnol Bioeng; 2021 Feb; 118(2):737-744. PubMed ID: 33073356
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional and structural characterization of a flavoprotein monooxygenase essential for biogenesis of tryptophylquinone cofactor.
    Oozeki T; Nakai T; Kozakai K; Okamoto K; Kuroda S; Kobayashi K; Tanizawa K; Okajima T
    Nat Commun; 2021 Feb; 12(1):933. PubMed ID: 33568660
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural and catalytic differences between two FADH(2)-dependent monooxygenases: 2,4,5-TCP 4-monooxygenase (TftD) from Burkholderia cepacia AC1100 and 2,4,6-TCP 4-monooxygenase (TcpA) from Cupriavidus necator JMP134.
    Hayes RP; Webb BN; Subramanian AK; Nissen M; Popchock A; Xun L; Kang C
    Int J Mol Sci; 2012; 13(8):9769-9784. PubMed ID: 22949829
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism.
    Meneely KM; Lamb AL
    Biochemistry; 2007 Oct; 46(42):11930-7. PubMed ID: 17900176
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Baeyer-Villiger monooxygenases: more than just green chemistry.
    Leisch H; Morley K; Lau PC
    Chem Rev; 2011 Jul; 111(7):4165-222. PubMed ID: 21542563
    [No Abstract]   [Full Text] [Related]  

  • 79. Type II flavoprotein monooxygenase PsFMO_A from the bacterium Pimelobacter sp. Bb-B catalyzes enantioselective Baeyer-Villiger oxidations with a relaxed cofactor specificity.
    Löwe J; Blifernez-Klassen O; Baier T; Wobbe L; Kruse O; Gröger H
    J Biotechnol; 2019 Mar; 294():81-87. PubMed ID: 30703472
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach.
    Musumeci MA; Lozada M; Rial DV; Mac Cormack WP; Jansson JK; Sjöling S; Carroll J; Dionisi HM
    Mar Drugs; 2017 Apr; 15(4):. PubMed ID: 28397770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.