These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38640065)

  • 21. Protocol for CRISPR-Cas9-mediated genome editing to study spermatogenesis in Caenorhabditis elegans.
    Wang P; Cao Z; Wang Q; Ma X; Wang N; Chen L; Zhao Y; Miao L
    STAR Protoc; 2023 Dec; 4(4):102720. PubMed ID: 37967017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiplexed CRISPR-Cas9 protocol for large transgene integration into the Schistosoma mansoni genome.
    Ittiprasert W; Moescheid MM; Mann VH; Brindley PJ
    STAR Protoc; 2024 Mar; 5(1):102886. PubMed ID: 38354082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimized CRISPR/Cas9-mediated single nucleotide mutation in adherent cancer cell lines.
    Gao P; Dong X; Wang Y; Wei GH
    STAR Protoc; 2021 Jun; 2(2):100419. PubMed ID: 33870225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of epitope tag knock-in mice with CRISPR-Cas9 to study the function of endogenous proteins.
    Zhang Z
    STAR Protoc; 2023 Sep; 4(3):102518. PubMed ID: 37585297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Creating Knockin Alleles in Mouse Embryonic Stem Cells by CRISPR/Cas9-Mediated Homologous Recombination Without Drug Selection.
    Liu P; Li Y; Lei J; Dong L
    Methods Mol Biol; 2019; 1874():115-137. PubMed ID: 30353511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of auxin inducible degron (AID) knock-in cell lines for targeted protein degradation in mammalian cells.
    Adhikari B; Narain A; Wolf E
    STAR Protoc; 2021 Dec; 2(4):100949. PubMed ID: 34849487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protocol for the electroporation of CRISPR-Cas for DNA and RNA targeting in Bos taurus zygotes.
    Biase FH; Schettini G
    STAR Protoc; 2024 Mar; 5(1):102940. PubMed ID: 38460133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protocol for precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas.
    Nievergelt AP; Diener DR; Bogdanova A; Brown T; Pigino G
    STAR Protoc; 2024 Mar; 5(1):102774. PubMed ID: 38096061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crispr/Cas9-mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region.
    Zhang F; Cheng D; Wang S; Zhu J
    Biotechnol Bioeng; 2020 Sep; 117(9):2816-2826. PubMed ID: 32449788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tild-CRISPR Allows for Efficient and Precise Gene Knockin in Mouse and Human Cells.
    Yao X; Zhang M; Wang X; Ying W; Hu X; Dai P; Meng F; Shi L; Sun Y; Yao N; Zhong W; Li Y; Wu K; Li W; Chen ZJ; Yang H
    Dev Cell; 2018 May; 45(4):526-536.e5. PubMed ID: 29787711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescent tagging of endogenous proteins with CRISPR/Cas9 in primary mouse neural stem cells.
    Morrow CS; Porter TJ; Moore DL
    STAR Protoc; 2021 Sep; 2(3):100744. PubMed ID: 34430917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome Editing of Erythroid Cell Culture Model Systems.
    Yik JJ; Crossley M; Quinlan KGR
    Methods Mol Biol; 2018; 1698():245-257. PubMed ID: 29076095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome Editing in Mice Using CRISPR/Cas9 Technology.
    Hall B; Cho A; Limaye A; Cho K; Khillan J; Kulkarni AB
    Curr Protoc Cell Biol; 2018 Dec; 81(1):e57. PubMed ID: 30178917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimized protocols for efficient gene editing in mouse hepatocytes
    Chen Y; Ding Q
    STAR Protoc; 2022 Mar; 3(1):101062. PubMed ID: 35005644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of a precise Oct4-hrGFP knockin cynomolgus monkey model via CRISPR/Cas9-assisted homologous recombination.
    Cui Y; Niu Y; Zhou J; Chen Y; Cheng Y; Li S; Ai Z; Chu C; Wang H; Zheng B; Chen X; Sha J; Guo X; Huang X; Ji W
    Cell Res; 2018 Mar; 28(3):383-386. PubMed ID: 29327727
    [No Abstract]   [Full Text] [Related]  

  • 36. CRISPR deactivation in mammalian cells using photocleavable guide RNAs.
    Zou RS; Liu Y; Ha T
    STAR Protoc; 2021 Dec; 2(4):100909. PubMed ID: 34746867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation of locus-specific degradable tag knock-ins in mouse and human cell lines.
    Damhofer H; Radzisheuskaya A; Helin K
    STAR Protoc; 2021 Jun; 2(2):100575. PubMed ID: 34151298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of mouse models carrying B cell restricted single or multiplexed loss-of-function mutations through CRISPR-Cas9 gene editing.
    Ten Hacken E; Gruber M; Hernández-Sánchez M; Hoffmann GB; Baranowski K; Redd RA; Clement K; Livak K; Wu CJ
    STAR Protoc; 2023 Dec; 4(4):102165. PubMed ID: 37729058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes.
    Chen S; Lee B; Lee AY; Modzelewski AJ; He L
    J Biol Chem; 2016 Jul; 291(28):14457-67. PubMed ID: 27151215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
    Yumlu S; Stumm J; Bashir S; Dreyer AK; Lisowski P; Danner E; Kühn R
    Methods; 2017 May; 121-122():29-44. PubMed ID: 28522326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.