BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 38640144)

  • 1. Improved detection of cholesterol gallstones using quasi-material decomposition images generated from single-energy computed tomography images via deep learning.
    Nishijima K; Shiraishi J
    Radiol Phys Technol; 2024 Jun; 17(2):360-366. PubMed ID: 38393491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based CAD schemes for the detection and classification of lung nodules from CT images: A survey.
    Mastouri R; Khlifa N; Neji H; Hantous-Zannad S
    J Xray Sci Technol; 2020; 28(4):591-617. PubMed ID: 32568165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilizing Deep Learning and Computed Tomography to Determine Pulmonary Nodule Activity in Patients With Nontuberculous Mycobacterial-Lung Disease.
    Lancaster AC; Cardin ME; Nguyen JA; Mehta TI; Oncel D; Bai HX; Cohen KA; Lin CT
    J Thorac Imaging; 2024 May; 39(3):194-199. PubMed ID: 38640144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs.
    Sim Y; Chung MJ; Kotter E; Yune S; Kim M; Do S; Han K; Kim H; Yang S; Lee DJ; Choi BW
    Radiology; 2020 Jan; 294(1):199-209. PubMed ID: 31714194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method.
    Jung H; Kim B; Lee I; Lee J; Kang J
    BMC Med Imaging; 2018 Dec; 18(1):48. PubMed ID: 30509191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network.
    Zhang C; Sun X; Dang K; Li K; Guo XW; Chang J; Yu ZQ; Huang FY; Wu YS; Liang Z; Liu ZY; Zhang XG; Gao XL; Huang SH; Qin J; Feng WN; Zhou T; Zhang YB; Fang WJ; Zhao MF; Yang XN; Zhou Q; Wu YL; Zhong WZ
    Oncologist; 2019 Sep; 24(9):1159-1165. PubMed ID: 30996009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks.
    Onishi Y; Teramoto A; Tsujimoto M; Tsukamoto T; Saito K; Toyama H; Imaizumi K; Fujita H
    Biomed Res Int; 2019; 2019():6051939. PubMed ID: 30719445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.
    Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W
    Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Detection of Active Pulmonary Tuberculosis at Chest Radiography Matched the Clinical Performance of Radiologists.
    Kazemzadeh S; Yu J; Jamshy S; Pilgrim R; Nabulsi Z; Chen C; Beladia N; Lau C; McKinney SM; Hughes T; Kiraly AP; Kalidindi SR; Muyoyeta M; Malemela J; Shih T; Corrado GS; Peng L; Chou K; Chen PC; Liu Y; Eswaran K; Tse D; Shetty S; Prabhakara S
    Radiology; 2023 Jan; 306(1):124-137. PubMed ID: 36066366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning-Based Prediction Model Using Radiography in Nontuberculous Mycobacterial Pulmonary Disease.
    Lee S; Lee HW; Kim HJ; Kim DK; Yim JJ; Yoon SH; Kwak N
    Chest; 2022 Nov; 162(5):995-1005. PubMed ID: 35777447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical characteristics and chest computed tomography findings related to the infectivity of pulmonary tuberculosis.
    Wang Y; Shang X; Wang L; Fan J; Tian F; Wang X; Kong W; Wang J; Wang Y; Ma X
    BMC Infect Dis; 2021 Nov; 21(1):1197. PubMed ID: 34837990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning to Determine the Activity of Pulmonary Tuberculosis on Chest Radiographs.
    Lee S; Yim JJ; Kwak N; Lee YJ; Lee JK; Lee JY; Kim JS; Kang YA; Jeon D; Jang MJ; Goo JM; Yoon SH
    Radiology; 2021 Nov; 301(2):435-442. PubMed ID: 34342505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework.
    Wang L; Ding W; Mo Y; Shi D; Zhang S; Zhong L; Wang K; Wang J; Huang C; Zhang S; Ye Z; Shen J; Xing Z
    Eur J Nucl Med Mol Imaging; 2021 Dec; 48(13):4293-4306. PubMed ID: 34131803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the duration needed to achieve culture negativity in patients with active pulmonary tuberculosis using convolutional neural networks and chest radiography.
    Higashiguchi M; Nishioka K; Kimura H; Matsumoto T
    Respir Investig; 2021 Jul; 59(4):421-427. PubMed ID: 33707161
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.