These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38640431)
21. A genome sequence survey of the mollicute corn stunt spiroplasma Spiroplasma kunkelii. Bai X; Hogenhout SA FEMS Microbiol Lett; 2002 Apr; 210(1):7-17. PubMed ID: 12023071 [TBL] [Abstract][Full Text] [Related]
22. Weedy hosts and prevalence of potential leafhopper vectors (Hemiptera: Cicadellidae) of a phytoplasma (16SrIX group) associated with Huanglongbing symptoms in citrus groves. Marques RN; Teixeira DC; Yamamoto PT; Lopes JR J Econ Entomol; 2012 Apr; 105(2):329-37. PubMed ID: 22606800 [TBL] [Abstract][Full Text] [Related]
23. Stolbur phytoplasma transmission to maize by Reptalus panzeri and the disease cycle of maize redness in Serbia. Jović J; Cvrković T; Mitrović M; Krnjajić S; Petrović A; Redinbaugh MG; Pratt RC; Hogenhout SA; Tosevski I Phytopathology; 2009 Sep; 99(9):1053-61. PubMed ID: 19671007 [TBL] [Abstract][Full Text] [Related]
24. Asymmetric Spread of SRBSDV between Rice and Corn Plants by the Vector Sogatella furcifera (Hemiptera: Delphacidae). Li P; Li F; Han Y; Yang L; Liao X; Hou M PLoS One; 2016; 11(10):e0165014. PubMed ID: 27760223 [TBL] [Abstract][Full Text] [Related]
25. Insect maintenance and transmission. Kingdom H Methods Mol Biol; 2013; 938():47-59. PubMed ID: 22987405 [TBL] [Abstract][Full Text] [Related]
26. Characterization of components of resistance to Corn Stunt disease. Oleszczuk JD; Catalano MI; Dalaisón L; Di Rienzo JA; Giménez Pecci MP; Carpane P PLoS One; 2020; 15(10):e0234454. PubMed ID: 33075073 [TBL] [Abstract][Full Text] [Related]
27. An analysis of the genomic variability of the phytopathogenic mollicute Spiroplasma kunkelii. Carpane P; Melcher U; Wayadande A; de la Paz Gimenez Pecci M; Laguna G; Dolezal W; Fletcher J Phytopathology; 2013 Feb; 103(2):129-34. PubMed ID: 23013451 [TBL] [Abstract][Full Text] [Related]
28. Co-infection with a wheat rhabdovirus causes a reduction in Mal de Río Cuarto virus titer in its planthopper vector. Dumón AD; Argüello Caro EB; Mattio MF; Alemandri V; Del Vas M; Truol G Bull Entomol Res; 2018 Apr; 108(2):232-240. PubMed ID: 28891462 [TBL] [Abstract][Full Text] [Related]
30. Sampling Methods for Leafhopper, Planthopper, and Psyllid Vectors. Krüger K; Fiore N Methods Mol Biol; 2019; 1875():37-52. PubMed ID: 30361994 [TBL] [Abstract][Full Text] [Related]
31. Infection rates and comparative population dynamics of Peregrinus maidis (Hemiptera: Delphacidae) on corn plants with and without symptoms of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus) infection. Higashi CH; Bressan A Environ Entomol; 2013 Oct; 42(5):949-56. PubMed ID: 24331606 [TBL] [Abstract][Full Text] [Related]
32. Differences in intracellular localization of corn stunt spiroplasmas in magnesium treated maize. Nome C; Magalhães PC; Oliveira E; Nome S; Lagune Irma G Biocell; 2009 Aug; 33(2):133-6. PubMed ID: 19886041 [TBL] [Abstract][Full Text] [Related]
33. Delivery of maize mosaic virus to planthopper vectors by microinjection increases infection efficiency and facilitates functional genomics experiments in the vector. Yao J; Rotenberg D; Whitfield AE J Virol Methods; 2019 Aug; 270():153-162. PubMed ID: 31132371 [TBL] [Abstract][Full Text] [Related]
34. Analysis of Acquisition and Titer of Maize Mosaic Rhabdovirus in Its Vector, Peregrinus maidis (Hemiptera: Delphacidae). Barandoc-Alviar K; Ramirez GM; Rotenberg D; Whitfield AE J Insect Sci; 2016; 16(1):. PubMed ID: 28076276 [TBL] [Abstract][Full Text] [Related]
35. Multiplication of maize rayado fino virus in the leafhopper vector Dalbulus maidis. Rivera C; Gámez R Intervirology; 1986; 25(2):76-82. PubMed ID: 3721812 [TBL] [Abstract][Full Text] [Related]
36. Occurrence in Brazil of Haplaxius crudus (Hemiptera: Cixiidae), Vector of Coconut Lethal Yellowing. Silva FG; Passos EM; Diniz LEC; Teodoro AV; Talamini V; Fernandes MF; Dollet M Neotrop Entomol; 2019 Feb; 48(1):171-174. PubMed ID: 30632083 [TBL] [Abstract][Full Text] [Related]
37. Corn Stunt Disease: An Ideal Insect-Microbial-Plant Pathosystem for Comprehensive Studies of Vector-Borne Plant Diseases of Corn. Jones TL; Medina RF Plants (Basel); 2020 Jun; 9(6):. PubMed ID: 32545891 [TBL] [Abstract][Full Text] [Related]
38. Corn Stunt Pathosystem and Its Leafhopper Vector in Brazil. Pozebon H; Stürmer GR; Arnemann JA J Econ Entomol; 2022 Dec; 115(6):1817-1833. PubMed ID: 36130194 [TBL] [Abstract][Full Text] [Related]
39. Detection of Pathogens Associated with Psyllids and Leafhoppers in Capsicum annuum L. in the Mexican States of Durango, Zacatecas, and Michoacán. Swisher KD; Munyaneza JE; Velásquez-Valle R; Mena-Covarrubias J Plant Dis; 2018 Jan; 102(1):146-153. PubMed ID: 30673459 [TBL] [Abstract][Full Text] [Related]