These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38640846)

  • 1. Coupling and uncoupling growth and product formation for producing chemicals.
    Toya Y; Shimizu H
    Curr Opin Biotechnol; 2024 Jun; 87():103133. PubMed ID: 38640846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive laboratory evolution for growth coupled microbial production.
    Godara A; Kao KC
    World J Microbiol Biotechnol; 2020 Oct; 36(11):175. PubMed ID: 33083911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum.
    Prell C; Busche T; Rückert C; Nolte L; Brandenbusch C; Wendisch VF
    Microb Cell Fact; 2021 May; 20(1):97. PubMed ID: 33971881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli.
    Wang X; Li Q; Sun C; Cai Z; Zheng X; Guo X; Ni X; Zhou W; Guo Y; Zheng P; Chen N; Sun J; Li Y; Ma Y
    Microb Cell Fact; 2019 Jun; 18(1):106. PubMed ID: 31186003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems biology based metabolic engineering for non-natural chemicals.
    Biz A; Proulx S; Xu Z; Siddartha K; Mulet Indrayanti A; Mahadevan R
    Biotechnol Adv; 2019 Nov; 37(6):107379. PubMed ID: 30953683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.
    Rohles CM; Gießelmann G; Kohlstedt M; Wittmann C; Becker J
    Microb Cell Fact; 2016 Sep; 15(1):154. PubMed ID: 27618862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia.
    Lee SH; Yun EJ; Kim J; Lee SJ; Um Y; Kim KH
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8255-71. PubMed ID: 27531513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories.
    Zhou S; Ding N; Han R; Deng Y
    Bioresour Technol; 2023 Jul; 379():128986. PubMed ID: 37001700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Robustness of Microbial Cell Factories.
    Gong Z; Nielsen J; Zhou YJ
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28857502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering cell factories for producing building block chemicals for bio-polymer synthesis.
    Tsuge Y; Kawaguchi H; Sasaki K; Kondo A
    Microb Cell Fact; 2016 Jan; 15():19. PubMed ID: 26794242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics-based design of microbial cell factories for anaerobic product formation.
    Cueto-Rojas HF; van Maris AJ; Wahl SA; Heijnen JJ
    Trends Biotechnol; 2015 Sep; 33(9):534-46. PubMed ID: 26232033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.
    Otero JM; Cimini D; Patil KR; Poulsen SG; Olsson L; Nielsen J
    PLoS One; 2013; 8(1):e54144. PubMed ID: 23349810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass.
    Wheeldon I; Christopher P; Blanch H
    Curr Opin Biotechnol; 2017 Jun; 45():127-135. PubMed ID: 28365403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production.
    Wang B; Zhang X; Yu X; Cui Z; Wang Z; Chen T; Zhao X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2155-2170. PubMed ID: 30623201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SSDesign: Computational metabolic pathway design based on flux variability using elementary flux modes.
    Toya Y; Shiraki T; Shimizu H
    Biotechnol Bioeng; 2015 Apr; 112(4):759-68. PubMed ID: 25408191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in Escherichia coli.
    Boecker S; Zahoor A; Schramm T; Link H; Klamt S
    Biotechnol J; 2019 Sep; 14(9):e1800438. PubMed ID: 30927494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control.
    Wei L; Zhao J; Wang Y; Gao J; Du M; Zhang Y; Xu N; Du H; Ju J; Liu Q; Liu J
    Metab Eng; 2022 Jan; 69():134-146. PubMed ID: 34856366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marine macroalgae: an untapped resource for producing fuels and chemicals.
    Wei N; Quarterman J; Jin YS
    Trends Biotechnol; 2013 Feb; 31(2):70-7. PubMed ID: 23245657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying target processes for microbial electrosynthesis by elementary mode analysis.
    Kracke F; Krömer JO
    BMC Bioinformatics; 2014 Dec; 15(1):410. PubMed ID: 25547630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart fermentation engineering for butanol production: designed biomass and consolidated bioprocessing systems.
    Zhao T; Tashiro Y; Sonomoto K
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9359-9371. PubMed ID: 31720773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.