BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38641041)

  • 1. Decoding the influence of central LEAP2 on food intake and its effect on accumbal dopamine release.
    Tufvesson-Alm M; Zhang Q; Aranäs C; Blid Sköldheden S; Edvardsson CE; Jerlhag E
    Prog Neurobiol; 2024 May; 236():102615. PubMed ID: 38641041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth hormone secretagogue receptor signalling affects high-fat intake independently of plasma levels of ghrelin and LEAP2, in a 4-day binge eating model.
    Cornejo MP; Castrogiovanni D; Schiöth HB; Reynaldo M; Marie J; Fehrentz JA; Perello M
    J Neuroendocrinol; 2019 Oct; 31(10):e12785. PubMed ID: 31469195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrauterine Growth Restriction Modifies the Accumbal Dopaminergic Response to Palatable Food Intake.
    Laureano DP; Alves MB; Miguel PM; Machado TD; Reis AR; Mucellini AB; Cunha FS; Lampert C; Salvador APA; Dalle Molle R; Mosca PR; Pokhvisneva I; Desai M; Ross MG; Silveira PP
    Neuroscience; 2019 Feb; 400():184-195. PubMed ID: 30599270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ghrelin and GHS-R1A signaling within the ventral and laterodorsal tegmental area regulate sexual behavior in sexually naïve male mice.
    Prieto-Garcia L; Egecioglu E; Studer E; Westberg L; Jerlhag E
    Psychoneuroendocrinology; 2015 Dec; 62():392-402. PubMed ID: 26398679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LEAP2 deletion in mice enhances ghrelin's actions as an orexigen and growth hormone secretagogue.
    Shankar K; Metzger NP; Singh O; Mani BK; Osborne-Lawrence S; Varshney S; Gupta D; Ogden SB; Takemi S; Richard CP; Nandy K; Liu C; Zigman JM
    Mol Metab; 2021 Nov; 53():101327. PubMed ID: 34428557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of POMC neurons in LEAP2 regulation of food intake and body weight.
    Chu G; Peng H; Yu N; Zhang Y; Lin X; Lu Y
    Front Endocrinol (Lausanne); 2022; 13():932761. PubMed ID: 36387867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens.
    Jerlhag E; Egecioglu E; Dickson SL; Douhan A; Svensson L; Engel JA
    Addict Biol; 2007 Mar; 12(1):6-16. PubMed ID: 17407492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats.
    Jerlhag E; Janson AC; Waters S; Engel JA
    PLoS One; 2012; 7(11):e49557. PubMed ID: 23166710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ghrelin in drug abuse and reward-relevant behaviors: a burgeoning field and gaps in the literature.
    Revitsky AR; Klein LC
    Curr Drug Abuse Rev; 2013 Sep; 6(3):231-44. PubMed ID: 24502454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Terminal Liver-Expressed Antimicrobial Peptide 2 (LEAP2) Region Exhibits Inverse Agonist Activity toward the Ghrelin Receptor.
    M'Kadmi C; Cabral A; Barrile F; Giribaldi J; Cantel S; Damian M; Mary S; Denoyelle S; Dutertre S; Péraldi-Roux S; Neasta J; Oiry C; Banères JL; Marie J; Perello M; Fehrentz JA
    J Med Chem; 2019 Jan; 62(2):965-973. PubMed ID: 30543423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hedonic Eating and the "Delicious Circle": From Lipid-Derived Mediators to Brain Dopamine and Back.
    Coccurello R; Maccarrone M
    Front Neurosci; 2018; 12():271. PubMed ID: 29740277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The endocannabinoid system is modulated in reward and homeostatic brain regions following diet-induced obesity in rats: a cluster analysis approach.
    Bourdy R; Hertz A; Filliol D; Andry V; Goumon Y; Mendoza J; Olmstead MC; Befort K
    Eur J Nutr; 2021 Dec; 60(8):4621-4633. PubMed ID: 34165614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amylin Modulates a Ventral Tegmental Area-to-Medial Prefrontal Cortex Circuit to Suppress Food Intake and Impulsive Food-Directed Behavior.
    Geisler CE; Décarie-Spain L; Loh MK; Trumbauer W; Gaisinsky J; Klug ME; Pelletier C; Davis JF; Schmidt HD; Roitman MF; Kanoski SE; Hayes MR
    Biol Psychiatry; 2024 May; 95(10):938-950. PubMed ID: 37517705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent circuitry underlying food reward and intake effects of ghrelin: dopaminergic VTA-accumbens projection mediates ghrelin's effect on food reward but not food intake.
    Skibicka KP; Shirazi RH; Rabasa-Papio C; Alvarez-Crespo M; Neuber C; Vogel H; Dickson SL
    Neuropharmacology; 2013 Oct; 73():274-83. PubMed ID: 23770258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the amylin pathway modulates cocaine-induced activation of the mesolimbic dopamine system in male mice.
    Kalafateli AL; Aranäs C; Jerlhag E
    Horm Behav; 2021 Jan; 127():104885. PubMed ID: 33166561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GHSR controls food deprivation-induced activation of CRF neurons of the hypothalamic paraventricular nucleus in a LEAP2-dependent manner.
    Fernandez G; Cabral A; De Francesco PN; Uriarte M; Reynaldo M; Castrogiovanni D; Zubiría G; Giovambattista A; Cantel S; Denoyelle S; Fehrentz JA; Tolle V; Schiöth HB; Perello M
    Cell Mol Life Sci; 2022 May; 79(5):277. PubMed ID: 35504998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system.
    Cordeira JW; Frank L; Sena-Esteves M; Pothos EN; Rios M
    J Neurosci; 2010 Feb; 30(7):2533-41. PubMed ID: 20164338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ghrelin increases intake of rewarding food in rodents.
    Egecioglu E; Jerlhag E; Salomé N; Skibicka KP; Haage D; Bohlooly-Y M; Andersson D; Bjursell M; Perrissoud D; Engel JA; Dickson SL
    Addict Biol; 2010 Jul; 15(3):304-11. PubMed ID: 20477752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the central ghrelin system in reward from food and chemical drugs.
    Dickson SL; Egecioglu E; Landgren S; Skibicka KP; Engel JA; Jerlhag E
    Mol Cell Endocrinol; 2011 Jun; 340(1):80-7. PubMed ID: 21354264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a novel fluorescent ligand of growth hormone secretagogue receptor based on the N-Terminal Leap2 region.
    Barrile F; M'Kadmi C; De Francesco PN; Cabral A; García Romero G; Mustafá ER; Cantel S; Damian M; Mary S; Denoyelle S; Banères JL; Marie J; Raingo J; Fehrentz JA; Perelló M
    Mol Cell Endocrinol; 2019 Dec; 498():110573. PubMed ID: 31499133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.