These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38641256)

  • 1. Dual pattern of cholesterol-induced decoupling of residue-residue interactions of Kir2.2.
    Beverley KM; Barbera N; Levitan I
    J Struct Biol; 2024 Jun; 216(2):108091. PubMed ID: 38641256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol sensitivity of KIR2.1 depends on functional inter-links between the N and C termini.
    Rosenhouse-Dantsker A; Noskov S; Logothetis DE; Levitan I
    Channels (Austin); 2013; 7(4):303-12. PubMed ID: 23807091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol.
    Epshtein Y; Chopra AP; Rosenhouse-Dantsker A; Kowalsky GB; Logothetis DE; Levitan I
    Proc Natl Acad Sci U S A; 2009 May; 106(19):8055-60. PubMed ID: 19416905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distant cytosolic residues mediate a two-way molecular switch that controls the modulation of inwardly rectifying potassium (Kir) channels by cholesterol and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)).
    Rosenhouse-Dantsker A; Noskov S; Han H; Adney SK; Tang QY; Rodríguez-Menchaca AA; Kowalsky GB; Petrou VI; Osborn CV; Logothetis DE; Levitan I
    J Biol Chem; 2012 Nov; 287(48):40266-78. PubMed ID: 22995912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol sensitivity of KIR2.1 is controlled by a belt of residues around the cytosolic pore.
    Rosenhouse-Dantsker A; Logothetis DE; Levitan I
    Biophys J; 2011 Jan; 100(2):381-9. PubMed ID: 21244834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel cholesterol-binding regions in Kir2 channels.
    Rosenhouse-Dantsker A; Noskov S; Durdagi S; Logothetis DE; Levitan I
    J Biol Chem; 2013 Oct; 288(43):31154-64. PubMed ID: 24019518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics Simulations of Kir2.2 Interactions with an Ensemble of Cholesterol Molecules.
    Barbera N; Ayee MAA; Akpa BS; Levitan I
    Biophys J; 2018 Oct; 115(7):1264-1280. PubMed ID: 30205899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of cholesterol sensitivity of Kir channels: role of the CD loop.
    Rosenhouse-Dantsker A; Leal-Pinto E; Logothetis DE; Levitan I
    Channels (Austin); 2010; 4(1):63-6. PubMed ID: 19923917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a cholesterol-binding pocket in inward rectifier K(+) (Kir) channels.
    Fürst O; Nichols CG; Lamoureux G; D'Avanzo N
    Biophys J; 2014 Dec; 107(12):2786-2796. PubMed ID: 25517146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels.
    Rosenhouse-Dantsker A
    Adv Exp Med Biol; 2019; 1135():119-138. PubMed ID: 31098814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel insights into the structural basis of pH-sensitivity in inward rectifier K+ channels Kir2.3.
    Ureche ON; Baltaev R; Ureche L; Strutz-Seebohm N; Lang F; Seebohm G
    Cell Physiol Biochem; 2008; 21(5-6):347-56. PubMed ID: 18453743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylinositol-4,5-bisphosphate (PIP2) regulation of strong inward rectifier Kir2.1 channels: multilevel positive cooperativity.
    Xie LH; John SA; Ribalet B; Weiss JN
    J Physiol; 2008 Apr; 586(7):1833-48. PubMed ID: 18276733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silencing of Kir2 channels by caveolin-1: cross-talk with cholesterol.
    Han H; Rosenhouse-Dantsker A; Gnanasambandam R; Epshtein Y; Chen Z; Sachs F; Minshall RD; Levitan I
    J Physiol; 2014 Sep; 592(18):4025-38. PubMed ID: 25038242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Crosstalk to Synergism: The Combined Effect of Cholesterol and PI(4,5)P
    Bukiya AN; Rosenhouse-Dantsker A
    Adv Exp Med Biol; 2023; 1422():169-191. PubMed ID: 36988881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes at cytoplasmic intersubunit interactions control Kir channel gating.
    Wang S; Borschel WF; Heyman S; Hsu P; Nichols CG
    J Biol Chem; 2017 Jun; 292(24):10087-10096. PubMed ID: 28446610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Common Signal Patch Drives AP-1 Protein-dependent Golgi Export of Inwardly Rectifying Potassium Channels.
    Li X; Ortega B; Kim B; Welling PA
    J Biol Chem; 2016 Jul; 291(29):14963-72. PubMed ID: 27226616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between Kir2.1/Kir2.3 activity and their distributions between cholesterol-rich and cholesterol-poor membrane domains.
    Tikku S; Epshtein Y; Collins H; Travis AJ; Rothblat GH; Levitan I
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C440-50. PubMed ID: 17459945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAP97 regulates Kir2.3 channels by multiple mechanisms.
    Vikstrom KL; Vaidyanathan R; Levinsohn S; O'Connell RP; Qian Y; Crye M; Mills JH; Anumonwo JM
    Am J Physiol Heart Circ Physiol; 2009 Oct; 297(4):H1387-97. PubMed ID: 19633205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in the putative pore-forming segment favor short-lived wild-type Kir2.1 pore conformations.
    Schwalbe RA; Wingo CS; Xia SL
    Biochemistry; 2002 Oct; 41(41):12457-66. PubMed ID: 12369836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of cytosolic cysteine residues to the gating properties of the Kir2.1 inward rectifier.
    Garneau L; Klein H; Parent L; Sauvé R
    Biophys J; 2003 Jun; 84(6):3717-29. PubMed ID: 12770878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.