These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 38641284)

  • 41.
    Isali I; McClellan P; Wong TR; Cingireddi S; Jain M; Anderson JM; Hijaz A; Akkus O
    Tissue Eng Part A; 2022 Aug; 28(15-16):672-684. PubMed ID: 35107345
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly stretchable composites based on cellulose.
    Chen X; Wang K; Wang Z; Zeng H; Yang T; Zhang X
    Int J Biol Macromol; 2021 Feb; 170():71-87. PubMed ID: 33358953
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gum Tragacanth (GT): A Versatile Biocompatible Material beyond Borders.
    Taghavizadeh Yazdi ME; Nazarnezhad S; Mousavi SH; Sadegh Amiri M; Darroudi M; Baino F; Kargozar S
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802011
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regenerative medicine and drug delivery: Progress via electrospun biomaterials.
    Doostmohammadi M; Forootanfar H; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110521. PubMed ID: 32228899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review.
    Aslam Khan MU; Abd Razak SI; Al Arjan WS; Nazir S; Sahaya Anand TJ; Mehboob H; Amin R
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33504080
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells.
    Nie X; Wang DA
    Biomater Sci; 2018 Oct; 6(11):2798-2811. PubMed ID: 30229775
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering Polysaccharides for Tissue Repair and Regeneration.
    Wu P; Xi X; Li R; Sun G
    Macromol Biosci; 2021 Sep; 21(9):e2100141. PubMed ID: 34219388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering.
    Yang Q; Peng J; Xiao H; Xu X; Qian Z
    Carbohydr Polym; 2022 Feb; 278():118952. PubMed ID: 34973769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area.
    Osorio M; Fernández-Morales P; Gañán P; Zuluaga R; Kerguelen H; Ortiz I; Castro C
    J Biomed Mater Res A; 2019 Feb; 107(2):348-359. PubMed ID: 30421501
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Advances in Marine Biomaterials Tailored and Primed for the Treatment of Damaged Soft Tissues.
    Kang MS; Jo HJ; Jang HJ; Kim B; Jung TG; Han DW
    Mar Drugs; 2023 Nov; 21(12):. PubMed ID: 38132932
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering dextran-based scaffolds for drug delivery and tissue repair.
    Sun G; Mao JJ
    Nanomedicine (Lond); 2012 Nov; 7(11):1771-84. PubMed ID: 23210716
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic and Responsive Growth Factor Delivery from Electrospun and Hydrogel Tissue Engineering Materials.
    Bruggeman KF; Williams RJ; Nisbet DR
    Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 29193871
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein-inorganic Nanohybrids: A Potential Symbiosis in Tissue Engineering.
    Freag MS; Elzoghby AO
    Curr Drug Targets; 2018; 19(16):1897-1904. PubMed ID: 29076428
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sulfated polysaccharide as biomimetic biopolymers for tissue engineering scaffolds fabrication: Challenges and opportunities.
    Alizadeh S; Ameri Z; Daemi H; Pezeshki-Modaress M
    Carbohydr Polym; 2024 Jul; 336():122124. PubMed ID: 38670755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine.
    Rodríguez-Vázquez M; Vega-Ruiz B; Ramos-Zúñiga R; Saldaña-Koppel DA; Quiñones-Olvera LF
    Biomed Res Int; 2015; 2015():821279. PubMed ID: 26504833
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulating cell adhesion to polybutylene succinate biotextile constructs for tissue engineering applications.
    Ribeiro VP; Almeida LR; Martins AR; Pashkuleva I; Marques AP; Ribeiro AS; Silva CJ; Bonifácio G; Sousa RA; Oliveira AL; Reis RL
    J Tissue Eng Regen Med; 2017 Oct; 11(10):2853-2863. PubMed ID: 27412323
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stem cell-based tissue engineering approaches for musculoskeletal regeneration.
    Brown PT; Handorf AM; Jeon WB; Li WJ
    Curr Pharm Des; 2013; 19(19):3429-45. PubMed ID: 23432679
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Composite scaffolds for cartilage tissue engineering.
    Moutos FT; Guilak F
    Biorheology; 2008; 45(3-4):501-12. PubMed ID: 18836249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of biodegradable textile scaffold based on hydrophobized hyaluronic acid.
    Zapotocky V; Pospisilova M; Janouchova K; Svadlak D; Batova J; Sogorkova J; Cepa M; Betak J; Stepankova V; Sulakova R; Kulhanek J; Pitucha T; Vranova J; Duffy G; Velebny V
    Int J Biol Macromol; 2017 Feb; 95():903-909. PubMed ID: 27794440
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tissue engineering scaffolds in the treatment of brain disorders in geriatric patients.
    Dehqan Niri A; Karimi Zarchi AA; Ghadiri Harati P; Salimi A; Mujokoro B
    Artif Organs; 2019 Oct; 43(10):947-960. PubMed ID: 31066912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.