These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38641295)
1. Bio-based P-N flame retardant with ZIF-67 in-situ growth on flexible polyurethane foam with excellent fire safety performance. Geng Y; Li R; Zhao Z; Li G; Huang B; Chen X; Jiao C Chemosphere; 2024 Jun; 357():142048. PubMed ID: 38641295 [TBL] [Abstract][Full Text] [Related]
2. Construction of sustainable and highly efficient fire-protective nanocoatings based on polydopamine and phosphorylated cellulose for flexible polyurethane foam. Ye D; Wang C; Xi J; Li W; Wang J; Miao E; Xing W; Yu B Int J Biol Macromol; 2024 Jun; 272(Pt 1):132639. PubMed ID: 38834116 [TBL] [Abstract][Full Text] [Related]
3. Phytic Acid-Iron/Laponite Coatings for Enhanced Flame Retardancy, Antidripping and Mechanical Properties of Flexible Polyurethane Foam. Jiang Q; Li P; Liu Y; Zhu P Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012407 [TBL] [Abstract][Full Text] [Related]
4. Design of copper salt@graphene nanohybrids to accomplish excellent resilience and superior fire safety for flexible polyurethane foam. Jia P; Ma C; Lu J; Yang W; Jiang X; Jiang G; Yin Z; Qiu Y; Qian L; Yu X; Hu Y; Hu W; Wang B J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1205-1218. PubMed ID: 34492459 [TBL] [Abstract][Full Text] [Related]
5. A biomimetic structured bio-based flame retardant coating on flexible polyurethane foam with low smoke release and antibacterial ability. Meng D; Wang K; Wang W; Sun J; Wang H; Gu X; Zhang S Chemosphere; 2023 Jan; 312(Pt 1):137060. PubMed ID: 36334737 [TBL] [Abstract][Full Text] [Related]
6. Functionalizing Ti Yin Z; Lu J; Hong N; Cheng W; Jia P; Wang H; Hu W; Wang B; Song L; Hu Y J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1300-1312. PubMed ID: 34583035 [TBL] [Abstract][Full Text] [Related]
7. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire. Nabipour H; Wang X; Song L; Hu Y Carbohydr Polym; 2020 Oct; 246():116641. PubMed ID: 32747276 [TBL] [Abstract][Full Text] [Related]
8. The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient P-N-S elemental hybrid synergistic flame retardant. Zhang S; Chu F; Xu Z; Zhou Y; Qiu Y; Qian L; Hu Y; Wang B; Hu W J Colloid Interface Sci; 2022 Jan; 606(Pt 1):768-783. PubMed ID: 34419816 [TBL] [Abstract][Full Text] [Related]
9. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. Rao WH; Liao W; Wang H; Zhao HB; Wang YZ J Hazard Mater; 2018 Oct; 360():651-660. PubMed ID: 30153630 [TBL] [Abstract][Full Text] [Related]
10. MOF-derived 3D petal-like CoNi-LDH array cooperates with MXene to effectively inhibit fire and toxic smoke hazards of FPUF. Zhou Y; Chu F; Ding L; Yang W; Zhang S; Xu Z; Qiu S; Hu W Chemosphere; 2022 Jun; 297():134134. PubMed ID: 35276116 [TBL] [Abstract][Full Text] [Related]
11. Novel MoS Zhi M; Liu Q; Zhao Y; Gao S; Zhang Z; He Y ACS Omega; 2020 Feb; 5(6):2734-2746. PubMed ID: 32095697 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical Ti Yin Z; Chu F; Yu B; Wang B; Hu Y J Colloid Interface Sci; 2022 Nov; 626():208-220. PubMed ID: 35797867 [TBL] [Abstract][Full Text] [Related]
13. Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate. McKenna ST; Birtles R; Dickens K; Walker RG; Spearpoint MJ; Stec AA; Hull TR Chemosphere; 2018 Apr; 196():429-439. PubMed ID: 29324384 [TBL] [Abstract][Full Text] [Related]
14. Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Phosphorus-Containing Polyester Diols and Expandable Graphite. Wang H; Liu Q; Li H; Zhang H; Yan S Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904525 [TBL] [Abstract][Full Text] [Related]
15. MOF-derived LDH modified flame-retardant polyurethane sponge for high-performance oil-water separation: Interface engineering design based on bioinspiration. Piao J; Lu M; Ren J; Wang Y; Feng T; Wang Y; Jiao C; Chen X; Kuang S J Hazard Mater; 2023 Feb; 444(Pt A):130398. PubMed ID: 36402109 [TBL] [Abstract][Full Text] [Related]
16. High-performance flexible polyurethane foam based on hierarchical BN@MOF-LDH@APTES structure: Enhanced adsorption, mechanical and fire safety properties. Zhou Y; Qiu S; Chu F; Yang W; Qiu Y; Qian L; Hu W; Song L J Colloid Interface Sci; 2022 Mar; 609():794-806. PubMed ID: 34857378 [TBL] [Abstract][Full Text] [Related]
17. Halogenated flame retardants: do the fire safety benefits justify the risks? Shaw SD; Blum A; Weber R; Kannan K; Rich D; Lucas D; Koshland CP; Dobraca D; Hanson S; Birnbaum LS Rev Environ Health; 2010; 25(4):261-305. PubMed ID: 21268442 [TBL] [Abstract][Full Text] [Related]
18. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam. Xu W; Wang G; Xu J; Liu Y; Chen R; Yan H J Hazard Mater; 2019 Nov; 379():120819. PubMed ID: 31276921 [TBL] [Abstract][Full Text] [Related]
19. An intumescent flame-retardant system based on carboxymethyl cellulose for flexible polyurethane foams with outstanding flame retardancy, antibacterial properties, and mechanical properties. Li P; Jiang XC; Song WM; Zhang LY; Xu YJ; Liu Y; Zhu P Int J Biol Macromol; 2023 Jun; 240():124387. PubMed ID: 37040855 [TBL] [Abstract][Full Text] [Related]
20. Flame retardant and superoleophilic polydopamine/chitosan-graft (g)-octanal coated polyurethane foam for separation oil/water mixtures. MohammadAlizadeh A; Elmi F Int J Biol Macromol; 2024 Feb; 259(Pt 2):129237. PubMed ID: 38191114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]