These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 38641327)
1. Ultraviolet Superradiance from Mega-Networks of Tryptophan in Biological Architectures. Babcock NS; Montes-Cabrera G; Oberhofer KE; Chergui M; Celardo GL; Kurian P J Phys Chem B; 2024 May; 128(17):4035-4046. PubMed ID: 38641327 [TBL] [Abstract][Full Text] [Related]
2. The feasibility of coherent energy transfer in microtubules. Craddock TJ; Friesen D; Mane J; Hameroff S; Tuszynski JA J R Soc Interface; 2014 Nov; 11(100):20140677. PubMed ID: 25232047 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence of the single tryptophan of cutinase: temperature and pH effect on protein conformation and dynamics. Martinho JM; Santos AM; Fedorov A; Baptista RP; Taipa MA; Cabral JM Photochem Photobiol; 2003 Jul; 78(1):15-22. PubMed ID: 12929743 [TBL] [Abstract][Full Text] [Related]
4. Luminescence studies of perturbation of tryptophan residues of tubulin in the complexes of tubulin with colchicine and colchicine analogues. Sardar PS; Maity SS; Das L; Ghosh S Biochemistry; 2007 Dec; 46(50):14544-56. PubMed ID: 18041823 [TBL] [Abstract][Full Text] [Related]
5. New insights in the interpretation of tryptophan fluorescence : origin of the fluorescence lifetime and characterization of a new fluorescence parameter in proteins: the emission to excitation ratio. Albani JR J Fluoresc; 2007 Jul; 17(4):406-17. PubMed ID: 17458686 [TBL] [Abstract][Full Text] [Related]
6. Flash photolysis of cutinase: identification and decay kinetics of transient intermediates formed upon UV excitation of aromatic residues. Neves-Petersen MT; Klitgaard S; Pascher T; Skovsen E; Polivka T; Yartsev A; Sundström V; Petersen SB Biophys J; 2009 Jul; 97(1):211-26. PubMed ID: 19580759 [TBL] [Abstract][Full Text] [Related]
7. The effect of tryptophan on UV-induced DNA photodamage. Oladepo SA; Loppnow GR Photochem Photobiol; 2010; 86(4):844-51. PubMed ID: 20492563 [TBL] [Abstract][Full Text] [Related]
8. Towards an insight on photodamage in hair fibre by UV-light: An experimental and theoretical study. Longo VM; da Silva Pinheiro A; Sambrano JR; Agnelli JA; Longo E; Varela JA Int J Cosmet Sci; 2013 Dec; 35(6):539-45. PubMed ID: 23614335 [TBL] [Abstract][Full Text] [Related]
9. Local unfolding and the stepwise loss of the functional properties of tubulin. Sackett DL; Bhattacharyya B; Wolff J Biochemistry; 1994 Nov; 33(43):12868-78. PubMed ID: 7947693 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence of tryptophan in designed hairpin and Trp-cage miniproteins: measurements of fluorescence yields and calculations by quantum mechanical molecular dynamics simulations. McMillan AW; Kier BL; Shu I; Byrne A; Andersen NH; Parson WW J Phys Chem B; 2013 Feb; 117(6):1790-809. PubMed ID: 23330783 [TBL] [Abstract][Full Text] [Related]
11. Probing nonenzymatic glycation of proteins by deep ultraviolet light emitting diode induced autofluorescence. Mukunda DC; Joshi VK; Chandra S; Siddaramaiah M; Rodrigues J; Gadag S; Nayak UY; Mazumder N; Satyamoorthy K; Mahato KK Int J Biol Macromol; 2022 Jul; 213():279-296. PubMed ID: 35654218 [TBL] [Abstract][Full Text] [Related]
12. Ultraviolet Nanophotonics Enables Autofluorescence Correlation Spectroscopy on Label-Free Proteins with a Single Tryptophan. Roy P; Claude JB; Tiwari S; Barulin A; Wenger J Nano Lett; 2023 Jan; 23(2):497-504. PubMed ID: 36603115 [TBL] [Abstract][Full Text] [Related]
13. Theoretical Research on Excited States: Ultraviolet and Fluorescence Spectra of Aromatic Amino Acids. Liu Y; Xu J; Han L; Liu Q; Yang Y; Li Z; Lu Z; Zhang H; Guo T; Liu Q Interdiscip Sci; 2020 Dec; 12(4):530-536. PubMed ID: 32979147 [TBL] [Abstract][Full Text] [Related]
14. A tryptophan synchronous and normal fluorescence study on bacteria inactivation mechanism. Li R; Dhankhar D; Chen J; Cesario TC; Rentzepis PM Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18822-18826. PubMed ID: 31481620 [TBL] [Abstract][Full Text] [Related]
15. Tryptophan and Non-Tryptophan Fluorescence of the Eye Lens Proteins Provides Diagnostics of Cataract at the Molecular Level. Gakamsky A; Duncan RR; Howarth NM; Dhillon B; Buttenschön KK; Daly DJ; Gakamsky D Sci Rep; 2017 Jan; 7():40375. PubMed ID: 28071717 [TBL] [Abstract][Full Text] [Related]
16. Raman scattering and red fluorescence in the photochemical transformation of dry tryptophan particles. Lai CW; Schwab M; Hill SC; Santarpia J; Pan YL Opt Express; 2016 May; 24(11):11654-67. PubMed ID: 27410091 [TBL] [Abstract][Full Text] [Related]
17. High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue. Neves-Petersen MT; Gryczynski Z; Lakowicz J; Fojan P; Pedersen S; Petersen E; Bjørn Petersen S Protein Sci; 2002 Mar; 11(3):588-600. PubMed ID: 11847281 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage. Chen J; Callis PR; King J Biochemistry; 2009 May; 48(17):3708-16. PubMed ID: 19358562 [TBL] [Abstract][Full Text] [Related]
19. Tryptophan-lipid interactions in membrane protein folding probed by ultraviolet resonance Raman and fluorescence spectroscopy. Sanchez KM; Kang G; Wu B; Kim JE Biophys J; 2011 May; 100(9):2121-30. PubMed ID: 21539779 [TBL] [Abstract][Full Text] [Related]
20. Ultraviolet-resonance raman spectroscopy of the filamentous virus Pf3: interactions of Trp 38 specific to the assembled virion subunit. Wen ZQ; Thomas GJ Biochemistry; 2000 Jan; 39(1):146-52. PubMed ID: 10625489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]