These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 38641327)
21. Intrinsic tryptophans of CRABPI as probes of structure and folding. Clark PL; Liu ZP; Zhang J; Gierasch LM Protein Sci; 1996 Jun; 5(6):1108-17. PubMed ID: 8762142 [TBL] [Abstract][Full Text] [Related]
22. Thermal transitions in the structure of tubulin. Environments of aromatic aminoacids. Mozo-Villarías A; Morros A; Andreu JM Eur Biophys J; 1991; 19(6):295-300. PubMed ID: 1915154 [TBL] [Abstract][Full Text] [Related]
23. Excited State Electron Distribution and Role of the Terminal Amine in Acidic and Basic Tryptophan Dipeptide Fluorescence. Eisenberg AS; Nathan M; Juszczak LJ J Mol Struct; 2016 Aug; 1118():56-67. PubMed ID: 27152052 [TBL] [Abstract][Full Text] [Related]
24. Fluorescence analysis of calmodulin mutants containing tryptophan: conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II. Chabbert M; Lukas TJ; Watterson DM; Axelsen PH; Prendergast FG Biochemistry; 1991 Jul; 30(30):7615-30. PubMed ID: 1854758 [TBL] [Abstract][Full Text] [Related]
25. Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins. Nagatomo S; Nagai M; Ogura T; Kitagawa T J Phys Chem B; 2013 Aug; 117(32):9343-53. PubMed ID: 23863193 [TBL] [Abstract][Full Text] [Related]
26. UVA illumination-induced optical coupling between tryptophan and natural dissolved organic matter. Wang X; Chen H; Lei K; Sun Z Environ Sci Pollut Res Int; 2015 Nov; 22(21):16969-77. PubMed ID: 26115705 [TBL] [Abstract][Full Text] [Related]
27. Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins. Kosinski-Collins MS; Flaugh SL; King J Protein Sci; 2004 Aug; 13(8):2223-35. PubMed ID: 15273315 [TBL] [Abstract][Full Text] [Related]
28. Nucleation and growth of microtubules from gamma-tubulin-functionalized gold surfaces. Yang Y; Deymier PA; Wang L; Guzman R; Hoying JB; McLaughlin HJ; Smith SD; Jongewaard IN Biotechnol Prog; 2006; 22(1):303-12. PubMed ID: 16454524 [TBL] [Abstract][Full Text] [Related]
29. Fluorescence properties of native and photooxidised proteinase K: the X-ray model in the region of the two tryptophans. Dolashka P; Dimov I; Genov N; Svendsen I; Wilson KS; Betzel C Biochim Biophys Acta; 1992 Feb; 1118(3):303-12. PubMed ID: 1737054 [TBL] [Abstract][Full Text] [Related]
30. Tryptophan Fluorescence Yields and Lifetimes as a Probe of Conformational Changes in Human Glucokinase. Zelent B; Bialas C; Gryczynski I; Chen P; Chib R; Lewerissa K; Corradini MG; Ludescher RD; Vanderkooi JM; Matschinsky FM J Fluoresc; 2017 Sep; 27(5):1621-1631. PubMed ID: 28432632 [TBL] [Abstract][Full Text] [Related]
32. Berberine Induces Toxicity in HeLa Cells through Perturbation of Microtubule Polymerization by Binding to Tubulin at a Unique Site. Raghav D; Ashraf SM; Mohan L; Rathinasamy K Biochemistry; 2017 May; 56(20):2594-2611. PubMed ID: 28459539 [TBL] [Abstract][Full Text] [Related]
33. The first UV absorption band of l-tryptophan is not due to two simultaneous orthogonal electronic transitions differing in the dipole moment. Catalán J Phys Chem Chem Phys; 2016 Jun; 18(22):15170-6. PubMed ID: 27197597 [TBL] [Abstract][Full Text] [Related]
34. Fluorescence study of the three tryptophan residues of the pore-forming domain of colicin A using multifrequency phase fluorometry. Vos R; Engelborghs Y; Izard J; Baty D Biochemistry; 1995 Feb; 34(5):1734-43. PubMed ID: 7849033 [TBL] [Abstract][Full Text] [Related]
35. Photophysical Behavior and Fluorescence Quenching of l-Tryptophan in Choline Chloride-Based Deep Eutectic Solvents. Kadyan A; Juneja S; Pandey S J Phys Chem B; 2019 Sep; 123(35):7578-7587. PubMed ID: 31402653 [TBL] [Abstract][Full Text] [Related]
36. Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides. Barulin A; Claude JB; Patra S; Bonod N; Wenger J Nano Lett; 2019 Oct; 19(10):7434-7442. PubMed ID: 31526002 [TBL] [Abstract][Full Text] [Related]
37. Isotopic effects in the electronic spectra of tryptophan. Zolotarev YA; Borisov YA; Dadayan AK; Myasoedov NF Amino Acids; 2006 Nov; 31(4):403-7. PubMed ID: 16583318 [TBL] [Abstract][Full Text] [Related]
38. Excited-state interactions in flurbiprofen-tryptophan dyads. Vayá I; Jiménez MC; Miranda MA J Phys Chem B; 2007 Aug; 111(31):9363-71. PubMed ID: 17608516 [TBL] [Abstract][Full Text] [Related]
39. Probing the Tryptophan Environment in Therapeutic Proteins: Implications for Higher Order Structure on Tryptophan Oxidation. Barnett GV; Balakrishnan G; Chennamsetty N; Hoffman L; Bongers J; Tao L; Huang Y; Slaney T; Das TK; Leone A; Kar SR J Pharm Sci; 2019 Jun; 108(6):1944-1952. PubMed ID: 30639740 [TBL] [Abstract][Full Text] [Related]
40. Tubulin conformation and dynamics: a red edge excitation shift study. Guha S; Rawat SS; Chattopadhyay A; Bhattacharyya B Biochemistry; 1996 Oct; 35(41):13426-33. PubMed ID: 8873611 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]