BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38641408)

  • 1. Neural Correlates of Online Action Preparation.
    Shahbazi M; Ariani G; Kashefi M; Pruszynski JA; Diedrichsen J
    J Neurosci; 2024 May; 44(22):. PubMed ID: 38641408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding Internally and Externally Driven Movement Plans.
    Ariani G; Wurm MF; Lingnau A
    J Neurosci; 2015 Oct; 35(42):14160-71. PubMed ID: 26490857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural topography and content of movement representations.
    de Lange FP; Hagoort P; Toni I
    J Cogn Neurosci; 2005 Jan; 17(1):97-112. PubMed ID: 15701242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human fMRI reveals that delayed action re-recruits visual perception.
    Singhal A; Monaco S; Kaufman LD; Culham JC
    PLoS One; 2013; 8(9):e73629. PubMed ID: 24040007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral structures participating in motor preparation in humans: a positron emission tomography study.
    Deiber MP; Ibañez V; Sadato N; Hallett M
    J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor planning brings human primary somatosensory cortex into action-specific preparatory states.
    Ariani G; Pruszynski JA; Diedrichsen J
    Elife; 2022 Jan; 11():. PubMed ID: 35018886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of the parietal cortex to increased efficiency of planning-based action selection.
    Randerath J; Valyear KF; Philip BA; Frey SH
    Neuropsychologia; 2017 Oct; 105():135-143. PubMed ID: 28438707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical activation associated with motor preparation can be used to predict the freely chosen effector of an upcoming movement and reflects response time: An fMRI decoding study.
    Hirose S; Nambu I; Naito E
    Neuroimage; 2018 Dec; 183():584-596. PubMed ID: 30165249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive coding of action intentions in dorsal and ventral visual stream is based on visual anticipations, memory-based information and motor preparation.
    Monaco S; Malfatti G; Zendron A; Pellencin E; Turella L
    Brain Struct Funct; 2019 Dec; 224(9):3291-3308. PubMed ID: 31673774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach.
    Cohen NR; Cross ES; Tunik E; Grafton ST; Culham JC
    Neuropsychologia; 2009 May; 47(6):1553-62. PubMed ID: 19168086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceptuo-motor interactions during prehension movements.
    Verhagen L; Dijkerman HC; Grol MJ; Toni I
    J Neurosci; 2008 Apr; 28(18):4726-35. PubMed ID: 18448649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding grip type and action goal during the observation of reaching-grasping actions: A multivariate fMRI study.
    Errante A; Ziccarelli S; Mingolla GP; Fogassi L
    Neuroimage; 2021 Nov; 243():118511. PubMed ID: 34450263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The selection of intended actions and the observation of others' actions: a time-resolved fMRI study.
    Cunnington R; Windischberger C; Robinson S; Moser E
    Neuroimage; 2006 Feb; 29(4):1294-302. PubMed ID: 16246592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Executed and observed movements have different distributed representations in human aIPS.
    Dinstein I; Gardner JL; Jazayeri M; Heeger DJ
    J Neurosci; 2008 Oct; 28(44):11231-9. PubMed ID: 18971465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 7T fMRI study of cerebellar activation in sequential finger movement tasks.
    Stefanescu MR; Thürling M; Maderwald S; Wiestler T; Ladd ME; Diedrichsen J; Timmann D
    Exp Brain Res; 2013 Jul; 228(2):243-54. PubMed ID: 23732948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding sequential finger movements from preparatory activity in higher-order motor regions: a functional magnetic resonance imaging multi-voxel pattern analysis.
    Nambu I; Hagura N; Hirose S; Wada Y; Kawato M; Naito E
    Eur J Neurosci; 2015 Nov; 42(10):2851-9. PubMed ID: 26342210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of observed biological and non biological movements on action imitation: an fMRI study.
    Crescentini C; Mengotti P; Grecucci A; Rumiati RI
    Brain Res; 2011 Oct; 1420():80-92. PubMed ID: 21959173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemispheric asymmetries in the transition from action preparation to execution.
    Sulpizio V; Lucci G; Berchicci M; Galati G; Pitzalis S; Di Russo F
    Neuroimage; 2017 Mar; 148():390-402. PubMed ID: 28069542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial attention and memory versus motor preparation: premotor cortex involvement as revealed by fMRI.
    Simon SR; Meunier M; Piettre L; Berardi AM; Segebarth CM; Boussaoud D
    J Neurophysiol; 2002 Oct; 88(4):2047-57. PubMed ID: 12364527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.