These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38641580)
1. Autonomous fetal morphology scan: deep learning + clustering merger - the second pair of eyes behind the doctor. Belciug S BMC Med Inform Decis Mak; 2024 Apr; 24(1):102. PubMed ID: 38641580 [TBL] [Abstract][Full Text] [Related]
2. Pattern Recognition and Anomaly Detection in fetal morphology using Deep Learning and Statistical learning (PARADISE): protocol for the development of an intelligent decision support system using fetal morphology ultrasound scan to detect fetal congenital anomaly detection. Belciug S; Ivanescu RC; Serbanescu MS; Ispas F; Nagy R; Comanescu CM; Istrate-Ofiteru A; Iliescu DG BMJ Open; 2024 Feb; 14(2):e077366. PubMed ID: 38365300 [TBL] [Abstract][Full Text] [Related]
3. Learning deep architectures for the interpretation of first-trimester fetal echocardiography (LIFE) - a study protocol for developing an automated intelligent decision support system for early fetal echocardiography. Ungureanu A; Marcu AS; Patru CL; Ruican D; Nagy R; Stoean R; Stoean C; Iliescu DG BMC Pregnancy Childbirth; 2023 Jan; 23(1):20. PubMed ID: 36631859 [TBL] [Abstract][Full Text] [Related]
5. Deep learning and Gaussian Mixture Modelling clustering mix. A new approach for fetal morphology view plane differentiation. Belciug S; Iliescu DG J Biomed Inform; 2023 Jul; 143():104402. PubMed ID: 37217028 [TBL] [Abstract][Full Text] [Related]
6. How much can AI see in early pregnancy: A multi-center study of fetus head characterization in week 10-14 in ultrasound using deep learning. Lin Q; Zhou Y; Shi S; Zhang Y; Yin S; Liu X; Peng Q; Huang S; Jiang Y; Cui C; She R; Xu J; Dong F Comput Methods Programs Biomed; 2022 Nov; 226():107170. PubMed ID: 36272307 [TBL] [Abstract][Full Text] [Related]
7. Deep learning for estimation of fetal weight throughout the pregnancy from fetal abdominal ultrasound. Płotka SS; Grzeszczyk MK; Szenejko PI; Żebrowska K; Szymecka-Samaha NA; Łęgowik T; Lipa MA; Kosińska-Kaczyńska K; Brawura-Biskupski-Samaha R; Išgum I; Sánchez CI; Sitek A Am J Obstet Gynecol MFM; 2023 Dec; 5(12):101182. PubMed ID: 37821009 [TBL] [Abstract][Full Text] [Related]
8. INDIAMAN-20 (INstant DIAgnosis of 20 Major ANomalies) protocol: application of IOTA diagnostic strategy to fetal anomalies. Paladini D; Franzè V; Morena M; Prefumo F Ultrasound Obstet Gynecol; 2023 Jul; 62(1):61-68. PubMed ID: 36484491 [TBL] [Abstract][Full Text] [Related]
9. First trimester anomaly scan using virtual reality (VR FETUS study): study protocol for a randomized clinical trial. Pietersma CS; Mulders AGMGJ; Moolenaar LM; Hunink MGM; Koning AHJ; Willemsen SP; Go ATJI; Steegers EAP; Rousian M BMC Pregnancy Childbirth; 2020 Sep; 20(1):515. PubMed ID: 32894073 [TBL] [Abstract][Full Text] [Related]
10. Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks. Khalili N; Turk E; Benders MJNL; Moeskops P; Claessens NHP; de Heus R; Franx A; Wagenaar N; Breur JMPJ; Viergever MA; Išgum I Neuroimage Clin; 2019; 24():102061. PubMed ID: 31835284 [TBL] [Abstract][Full Text] [Related]
11. Transfer learning for accurate fetal organ classification from ultrasound images: a potential tool for maternal healthcare providers. Ghabri H; Alqahtani MS; Ben Othman S; Al-Rasheed A; Abbas M; Almubarak HA; Sakli H; Abdelkarim MN Sci Rep; 2023 Oct; 13(1):17904. PubMed ID: 37863944 [TBL] [Abstract][Full Text] [Related]
12. Quality-improvement program for ultrasound-based fetal anatomy screening using large-scale clinical audit. Yaqub M; Kelly B; Stobart H; Napolitano R; Noble JA; Papageorghiou AT Ultrasound Obstet Gynecol; 2019 Aug; 54(2):239-245. PubMed ID: 30302849 [TBL] [Abstract][Full Text] [Related]
14. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Xie HN; Wang N; He M; Zhang LH; Cai HM; Xian JB; Lin MF; Zheng J; Yang YZ Ultrasound Obstet Gynecol; 2020 Oct; 56(4):579-587. PubMed ID: 31909548 [TBL] [Abstract][Full Text] [Related]
15. Automated 3D ultrasound image analysis for first trimester assessment of fetal health. Ryou H; Yaqub M; Cavallaro A; Papageorghiou AT; Alison Noble J Phys Med Biol; 2019 Sep; 64(18):185010. PubMed ID: 31408850 [TBL] [Abstract][Full Text] [Related]
16. Use of real-time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations. Lin M; He X; Guo H; He M; Zhang L; Xian J; Lei T; Xu Q; Zheng J; Feng J; Hao C; Yang Y; Wang N; Xie H Ultrasound Obstet Gynecol; 2022 Mar; 59(3):304-316. PubMed ID: 34940999 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs. Huang X; Liu Y; Li Y; Qi K; Gao A; Zheng B; Liang D; Long X Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679449 [TBL] [Abstract][Full Text] [Related]
18. Use of artificial intelligence and deep learning in fetal ultrasound imaging. Ramirez Zegarra R; Ghi T Ultrasound Obstet Gynecol; 2023 Aug; 62(2):185-194. PubMed ID: 36436205 [TBL] [Abstract][Full Text] [Related]
19. A deep learning framework for identifying and segmenting three vessels in fetal heart ultrasound images. Yan L; Ling S; Mao R; Xi H; Wang F Biomed Eng Online; 2024 Apr; 23(1):39. PubMed ID: 38566181 [TBL] [Abstract][Full Text] [Related]
20. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches. Zhou X Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]