BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38641688)

  • 21. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification of oolong tea varieties based on computer vision and convolutional neural networks.
    Zhu Y; Chen S; Yin H; Han X; Xu M; Wang W; Zhang Y; Feng X; Liu Y
    J Sci Food Agric; 2024 Feb; 104(3):1630-1637. PubMed ID: 37842747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated Interpretation of Blood Culture Gram Stains by Use of a Deep Convolutional Neural Network.
    Smith KP; Kang AD; Kirby JE
    J Clin Microbiol; 2018 Mar; 56(3):. PubMed ID: 29187563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated Extraction of Skin Wound Healing Biomarkers From In Vivo Label-Free Multiphoton Microscopy Using Convolutional Neural Networks.
    Jones JD; Rodriguez MR; Quinn KP
    Lasers Surg Med; 2021 Oct; 53(8):1086-1095. PubMed ID: 33442889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques.
    Saeedi S; Rezayi S; Keshavarz H; R Niakan Kalhori S
    BMC Med Inform Decis Mak; 2023 Jan; 23(1):16. PubMed ID: 36691030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive review of methods based on deep learning for diabetes-related foot ulcers.
    Zhang J; Qiu Y; Peng L; Zhou Q; Wang Z; Qi M
    Front Endocrinol (Lausanne); 2022; 13():945020. PubMed ID: 36004341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automation of Detection of Cervical Cancer Using Convolutional Neural Networks.
    Kudva V; Prasad K; Guruvare S
    Crit Rev Biomed Eng; 2018; 46(2):135-145. PubMed ID: 30055530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated glioma grading on conventional MRI images using deep convolutional neural networks.
    Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW
    Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated Taxonomic Identification of Insects with Expert-Level Accuracy Using Effective Feature Transfer from Convolutional Networks.
    Valan M; Makonyi K; Maki A; Vondráček D; Ronquist F
    Syst Biol; 2019 Nov; 68(6):876-895. PubMed ID: 30825372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Domain- and task-specific transfer learning for medical segmentation tasks.
    Zoetmulder R; Gavves E; Caan M; Marquering H
    Comput Methods Programs Biomed; 2022 Feb; 214():106539. PubMed ID: 34875512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Head and Neck Cancer Segmentation in FDG PET Images: Performance Comparison of Convolutional Neural Networks and Vision Transformers.
    Xiong X; Smith BJ; Graves SA; Graham MM; Buatti JM; Beichel RR
    Tomography; 2023 Oct; 9(5):1933-1948. PubMed ID: 37888743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification of cell morphology with quantitative phase microscopy and machine learning.
    Li Y; Di J; Wang K; Wang S; Zhao J
    Opt Express; 2020 Aug; 28(16):23916-23927. PubMed ID: 32752380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data.
    Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C
    Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning algorithms in microbial classification: a comparative analysis.
    Wu Y; Gadsden SA
    Front Artif Intell; 2023; 6():1200994. PubMed ID: 37928448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Memory-efficient semantic segmentation of large microscopy images using graph-based neural networks.
    Jain A; Laidlaw DH; Bajcsy P; Singh R
    Microscopy (Oxf); 2024 Jun; 73(3):275-286. PubMed ID: 37864808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.