These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 38642080)

  • 1. An Eclectic Review on Dicarboxylic Acid Production Through Yeast Cell Factories and Its Industrial Prominence.
    Kayalvizhi R; Sanjana J; Jacob S; Kumar V
    Curr Microbiol; 2024 Apr; 81(6):147. PubMed ID: 38642080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress on bio-based production of dicarboxylic acids in yeast.
    Zhang X; Zhao Y; Liu Y; Wang J; Deng Y
    Appl Microbiol Biotechnol; 2020 May; 104(10):4259-4272. PubMed ID: 32215709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotechnological production of bio-based long-chain dicarboxylic acids with oleogenious yeasts.
    Werner N; Zibek S
    World J Microbiol Biotechnol; 2017 Oct; 33(11):194. PubMed ID: 28983758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Strain engineering and fermentation technology for production of long-chain dicarboxylic acid: a review].
    Zhang Q; Wen Z; Zhang L; Fan Y; Li F
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4420-4431. PubMed ID: 36593186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering tolerance to industrially relevant stress factors in yeast cell factories.
    Deparis Q; Claes A; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28586408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects.
    Gu S; Zhu F; Zhang L; Wen J
    J Agric Food Chem; 2024 Mar; 72(11):5555-5573. PubMed ID: 38442481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae.
    Zhu P; Luo R; Li Y; Chen X
    Microbiol Spectr; 2022 Dec; 10(6):e0227722. PubMed ID: 36354322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on sustainable yeast biotechnological processes and applications.
    Nandy SK; Srivastava RK
    Microbiol Res; 2018 Mar; 207():83-90. PubMed ID: 29458873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering energetically efficient transport of dicarboxylic acids in yeast
    Darbani B; Stovicek V; van der Hoek SA; Borodina I
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19415-19420. PubMed ID: 31467169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering yeast for high-level production of diterpenoid sclareol.
    Cao X; Yu W; Chen Y; Yang S; Zhao ZK; Nielsen J; Luan H; Zhou YJ
    Metab Eng; 2023 Jan; 75():19-28. PubMed ID: 36371032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
    Borodina I; Nielsen J
    Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.
    Mishra P; Park GY; Lakshmanan M; Lee HS; Lee H; Chang MW; Ching CB; Ahn J; Lee DY
    Biotechnol Bioeng; 2016 Sep; 113(9):1993-2004. PubMed ID: 26915092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.
    Jiang M; Ma J; Wu M; Liu R; Liang L; Xin F; Zhang W; Jia H; Dong W
    Bioresour Technol; 2017 Dec; 245(Pt B):1710-1717. PubMed ID: 28622981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources.
    Lee H; Han C; Lee HW; Park G; Jeon W; Ahn J; Lee H
    Biotechnol Biofuels; 2018; 11():310. PubMed ID: 30455739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae.
    Mitsui R; Yamada R; Matsumoto T; Ogino H
    World J Microbiol Biotechnol; 2022 Jan; 38(3):38. PubMed ID: 35018511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain.
    Nicolaï T; Deparis Q; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2021 Jun; 20(1):114. PubMed ID: 34098954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production].
    Yang F; Cao M; Jin Y; Yang X; Tian S
    Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):901-11. PubMed ID: 23185890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.
    Baritugo KA; Kim HT; David Y; Choi JI; Hong SH; Jeong KJ; Choi JH; Joo JC; Park SJ
    Appl Microbiol Biotechnol; 2018 May; 102(9):3915-3937. PubMed ID: 29557518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-lactate production in engineered Saccharomyces cerevisiae using a multistage multiobjective automated design framework.
    Amaradio MN; Jansen G; Costanza J; Patanè A; Branduardi P; Porro D; Nicosia G
    Biotechnol Bioeng; 2023 Jul; 120(7):1929-1952. PubMed ID: 37021334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.