BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38642552)

  • 1. QDPR deficiency drives immune suppression in pancreatic cancer.
    Liu J; He X; Deng S; Zhao S; Zhang S; Chen Z; Xue C; Zeng L; Zhao H; Zhou Y; Bai R; Xu Z; Liu S; Zhou Q; Li M; Zhang J; Huang X; Chen R; Wang L; Lin D; Zheng J
    Cell Metab; 2024 May; 36(5):984-999.e8. PubMed ID: 38642552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dysregulated BH4 metabolism facilitates immunosuppression in pancreatic cancer.
    Cronin SJF
    Cell Metab; 2024 May; 36(5):886-888. PubMed ID: 38718754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of QDPR synergistically modulates intracellular tetrahydrobiopterin profiles in cooperation with methotrexate.
    Hara S; Kono H; Suto N; Kojima H; Kishimoto K; Yoshino H; Niiyama S; Kakihana Y; Ichinose H
    Biochem Biophys Res Commun; 2024 Jul; 717():150059. PubMed ID: 38723517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding profile of quinonoid-dihydrobiopterin to quinonoid-dihydropteridine reductase examined by in silico and in vitro analyses.
    Kono H; Hara S; Furuta T; Ichinose H
    J Biochem; 2023 Oct; 174(5):441-450. PubMed ID: 37540845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disturbed biopterin and folate metabolism in the Qdpr-deficient mouse.
    Xu F; Sudo Y; Sanechika S; Yamashita J; Shimaguchi S; Honda S; Sumi-Ichinose C; Mori-Kojima M; Nakata R; Furuta T; Sakurai M; Sugimoto M; Soga T; Kondo K; Ichinose H
    FEBS Lett; 2014 Nov; 588(21):3924-31. PubMed ID: 25240194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity.
    Morrison AH; Diamond MS; Hay CA; Byrne KT; Vonderheide RH
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):8022-8031. PubMed ID: 32213589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERK Inhibition Improves Anti-PD-L1 Immune Checkpoint Blockade in Preclinical Pancreatic Ductal Adenocarcinoma.
    Henry KE; Mack KN; Nagle VL; Cornejo M; Michel AO; Fox IL; Davydova M; Dilling TR; Pillarsetty N; Lewis JS
    Mol Cancer Ther; 2021 Oct; 20(10):2026-2034. PubMed ID: 34349003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer.
    Ma Y; Li J; Wang H; Chiu Y; Kingsley CV; Fry D; Delaney SN; Wei SC; Zhang J; Maitra A; Yee C
    Gastroenterology; 2020 Jul; 159(1):306-319.e12. PubMed ID: 32179091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging increases circulating BH
    Bouly M; Bourguignon MP; Roesch S; Rigouin P; Gosgnach W; Bossard E; Royere E; Diguet N; Sansilvestri-Morel P; Bonnin A; Xuereb L; Berson P; Komajda M; Bernhardt P; Tyl B
    Transl Res; 2021 Dec; 238():36-48. PubMed ID: 34332154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NDRG1 overcomes resistance to immunotherapy of pancreatic ductal adenocarcinoma through inhibiting ATG9A-dependent degradation of MHC-1.
    Zhang Z; Song B; Wei H; Liu Y; Zhang W; Yang Y; Sun B
    Drug Resist Updat; 2024 Mar; 73():101040. PubMed ID: 38228036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gut-derived lipopolysaccharide remodels tumoral microenvironment and synergizes with PD-L1 checkpoint blockade via TLR4/MyD88/AKT/NF-κB pathway in pancreatic cancer.
    Yin H; Pu N; Chen Q; Zhang J; Zhao G; Xu X; Wang D; Kuang T; Jin D; Lou W; Wu W
    Cell Death Dis; 2021 Oct; 12(11):1033. PubMed ID: 34718325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I.
    Yamamoto K; Venida A; Yano J; Biancur DE; Kakiuchi M; Gupta S; Sohn ASW; Mukhopadhyay S; Lin EY; Parker SJ; Banh RS; Paulo JA; Wen KW; Debnath J; Kim GE; Mancias JD; Fearon DT; Perera RM; Kimmelman AC
    Nature; 2020 May; 581(7806):100-105. PubMed ID: 32376951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD200 promotes immunosuppression in the pancreatic tumor microenvironment.
    Choueiry F; Torok M; Shakya R; Agrawal K; Deems A; Benner B; Hinton A; Shaffer J; Blaser BW; Noonan AM; Williams TM; Dillhoff M; Conwell DL; Hart PA; Cruz-Monserrate Z; Bai XF; Carson WE; Mace TA
    J Immunother Cancer; 2020 Jun; 8(1):. PubMed ID: 32581043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiotherapy and CD40 Activation Separately Augment Immunity to Checkpoint Blockade in Cancer.
    Rech AJ; Dada H; Kotzin JJ; Henao-Mejia J; Minn AJ; Twyman-Saint Victor C; Vonderheide RH
    Cancer Res; 2018 Aug; 78(15):4282-4291. PubMed ID: 29844122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting both tumour-associated CXCR2
    Nywening TM; Belt BA; Cullinan DR; Panni RZ; Han BJ; Sanford DE; Jacobs RC; Ye J; Patel AA; Gillanders WE; Fields RC; DeNardo DG; Hawkins WG; Goedegebuure P; Linehan DC
    Gut; 2018 Jun; 67(6):1112-1123. PubMed ID: 29196437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophage-Derived Granulin Drives Resistance to Immune Checkpoint Inhibition in Metastatic Pancreatic Cancer.
    Quaranta V; Rainer C; Nielsen SR; Raymant ML; Ahmed MS; Engle DD; Taylor A; Murray T; Campbell F; Palmer DH; Tuveson DA; Mielgo A; Schmid MC
    Cancer Res; 2018 Aug; 78(15):4253-4269. PubMed ID: 29789416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor Cell-Intrinsic USP22 Suppresses Antitumor Immunity in Pancreatic Cancer.
    Li J; Yuan S; Norgard RJ; Yan F; Yamazoe T; Blanco A; Stanger BZ
    Cancer Immunol Res; 2020 Mar; 8(3):282-291. PubMed ID: 31871120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodeling of Stromal Immune Microenvironment by Urolithin A Improves Survival with Immune Checkpoint Blockade in Pancreatic Cancer.
    Mehra S; Garrido VT; Dosch AR; Lamichhane P; Srinivasan S; Singh SP; Zhou Z; De Castro Silva I; Joshi C; Ban Y; Datta J; Gilboa E; Merchant NB; Nagathihalli NS
    Cancer Res Commun; 2023 Jul; 3(7):1224-1236. PubMed ID: 37448553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy.
    Adeshakin AO; Liu W; Adeshakin FO; Afolabi LO; Zhang M; Zhang G; Wang L; Li Z; Lin L; Cao Q; Yan D; Wan X
    Cell Immunol; 2021 Apr; 362():104286. PubMed ID: 33524739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell type-specific recycling of tetrahydrobiopterin by dihydrofolate reductase explains differential effects of 7,8-dihydrobiopterin on endothelial nitric oxide synthase uncoupling.
    Schmidt K; Kolesnik B; Gorren AC; Werner ER; Mayer B
    Biochem Pharmacol; 2014 Aug; 90(3):246-53. PubMed ID: 24863258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.