BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38642552)

  • 21. Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer.
    Song J; Lee J; Kim J; Jo S; Kim YJ; Baek JE; Kwon ES; Lee KP; Yang S; Kwon KS; Kim DU; Kang TH; Park YY; Chang S; Cho HJ; Kim SC; Koh SS; Kim S
    Oncotarget; 2016 Aug; 7(32):51840-51853. PubMed ID: 27322081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade.
    Nielsen SR; Strøbech JE; Horton ER; Jackstadt R; Laitala A; Bravo MC; Maltese G; Jensen ARD; Reuten R; Rafaeva M; Karim SA; Hwang CI; Arnes L; Tuveson DA; Sansom OJ; Morton JP; Erler JT
    Nat Commun; 2021 Jun; 12(1):3414. PubMed ID: 34099731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer.
    Pan Y; Lu F; Fei Q; Yu X; Xiong P; Yu X; Dang Y; Hou Z; Lin W; Lin X; Zhang Z; Pan M; Huang H
    J Hematol Oncol; 2019 Nov; 12(1):124. PubMed ID: 31771616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer.
    Huang J; Chen P; Liu K; Liu J; Zhou B; Wu R; Peng Q; Liu ZX; Li C; Kroemer G; Lotze M; Zeh H; Kang R; Tang D
    Gut; 2021 May; 70(5):890-899. PubMed ID: 32816920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia.
    McDonald PC; Chafe SC; Brown WS; Saberi S; Swayampakula M; Venkateswaran G; Nemirovsky O; Gillespie JA; Karasinska JM; Kalloger SE; Supuran CT; Schaeffer DF; Bashashati A; Shah SP; Topham JT; Yapp DT; Li J; Renouf DJ; Stanger BZ; Dedhar S
    Gastroenterology; 2019 Sep; 157(3):823-837. PubMed ID: 31078621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CD40L-armed oncolytic herpes simplex virus suppresses pancreatic ductal adenocarcinoma by facilitating the tumor microenvironment favorable to cytotoxic T cell response in the syngeneic mouse model.
    Wang R; Chen J; Wang W; Zhao Z; Wang H; Liu S; Li F; Wan Y; Yin J; Wang R; Li Y; Zhang C; Zhang H; Cao Y
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35086948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways.
    Crabtree MJ; Tatham AL; Hale AB; Alp NJ; Channon KM
    J Biol Chem; 2009 Oct; 284(41):28128-28136. PubMed ID: 19666465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression.
    Seifert L; Werba G; Tiwari S; Giao Ly NN; Alothman S; Alqunaibit D; Avanzi A; Barilla R; Daley D; Greco SH; Torres-Hernandez A; Pergamo M; Ochi A; Zambirinis CP; Pansari M; Rendon M; Tippens D; Hundeyin M; Mani VR; Hajdu C; Engle D; Miller G
    Nature; 2016 Apr; 532(7598):245-9. PubMed ID: 27049944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perturbation of monoamine metabolism and enhanced fear responses in mice defective in the regeneration of tetrahydrobiopterin.
    Miyajima K; Sudo Y; Sanechika S; Hara Y; Horiguchi M; Xu F; Suzuki M; Hara S; Tanda K; Inoue KI; Takada M; Yoshioka N; Takebayashi H; Mori-Kojima M; Sugimoto M; Sumi-Ichinose C; Kondo K; Takao K; Miyakawa T; Ichinose H
    J Neurochem; 2022 Apr; 161(2):129-145. PubMed ID: 35233765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quinonoid dihydropteridine reductase, a tetrahydrobiopterin-recycling enzyme, contributes to 5-hydroxytryptamine-associated platelet aggregation in mice.
    Suganuma Y; Sumi-Ichinose C; Kano T; Ikemoto K; Matsui T; Ichinose H; Kondo K
    J Pharmacol Sci; 2022 Nov; 150(3):173-179. PubMed ID: 36184122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interleukin 35 Expression Correlates With Microvessel Density in Pancreatic Ductal Adenocarcinoma, Recruits Monocytes, and Promotes Growth and Angiogenesis of Xenograft Tumors in Mice.
    Huang C; Li Z; Li N; Li Y; Chang A; Zhao T; Wang X; Wang H; Gao S; Yang S; Hao J; Ren H
    Gastroenterology; 2018 Feb; 154(3):675-688. PubMed ID: 28989066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tetrahydrobiopterin recycling, a key determinant of endothelial nitric-oxide synthase-dependent signaling pathways in cultured vascular endothelial cells.
    Sugiyama T; Levy BD; Michel T
    J Biol Chem; 2009 May; 284(19):12691-700. PubMed ID: 19286667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pancreatic Stellate Cells Promote Tumor Progression by Promoting an Immunosuppressive Microenvironment in Murine Models of Pancreatic Cancer.
    Li C; Cui L; Yang L; Wang B; Zhuo Y; Zhang L; Wang X; Zhang Q; Zhang S
    Pancreas; 2020 Jan; 49(1):120-127. PubMed ID: 31856087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. miR-128 Regulates Tumor Cell CD47 Expression and Promotes Anti-tumor Immunity in Pancreatic Cancer.
    Xi Q; Chen Y; Yang GZ; Zhang JY; Zhang LJ; Guo XD; Zhao JY; Xue ZY; Li Y; Zhang R
    Front Immunol; 2020; 11():890. PubMed ID: 32536914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer.
    Fan P; Zhao J; Meng Z; Wu H; Wang B; Wu H; Jin X
    J Exp Clin Cancer Res; 2019 Feb; 38(1):47. PubMed ID: 30709380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blockade of histamine receptor H1 augments immune checkpoint therapy by enhancing MHC-I expression in pancreatic cancer cells.
    Zhong P; Nakata K; Oyama K; Higashijima N; Sagara A; Date S; Luo H; Hayashi M; Kubo A; Wu C; He S; Yamamoto T; Koikawa K; Iwamoto C; Abe T; Ikenaga N; Ohuchida K; Morisaki T; Oda Y; Kuba K; Nakamura M
    J Exp Clin Cancer Res; 2024 May; 43(1):138. PubMed ID: 38715057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting myeloperoxidase limits myeloid cell immunosuppression enhancing immune checkpoint therapy for pancreatic cancer.
    Basnet A; Landreth KM; Nohoesu R; Santiago SP; Geldenhuys WJ; Boone BA; Liu TW
    Cancer Immunol Immunother; 2024 Feb; 73(3):57. PubMed ID: 38367056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of 2-arachidonoylglycerol in the regulation of the tumor-immune microenvironment in murine models of pancreatic cancer.
    Qiu C; Yang L; Wang B; Cui L; Li C; Zhuo Y; Zhang L; Zhang S; Zhang Q; Wang X
    Biomed Pharmacother; 2019 Jul; 115():108952. PubMed ID: 31078044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anti-pancreatic tumor efficacy of a Listeria-based, Annexin A2-targeting immunotherapy in combination with anti-PD-1 antibodies.
    Kim VM; Blair AB; Lauer P; Foley K; Che X; Soares K; Xia T; Muth ST; Kleponis J; Armstrong TD; Wolfgang CL; Jaffee EM; Brockstedt D; Zheng L
    J Immunother Cancer; 2019 May; 7(1):132. PubMed ID: 31113479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exogenous biopterins requirement for iNOS function in vascular smooth muscle cells.
    Yoshida M; Nakanishi N; Wang X; Hattori Y
    J Cardiovasc Pharmacol; 2003 Aug; 42(2):197-203. PubMed ID: 12883322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.