These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38642663)

  • 1. Deciphering styrene oxide tolerance mechanisms in Gluconobacter oxydans mutant strain.
    Chen Y; Liu F; Sha A; Xu M; Rao Z; Zhang X
    Bioresour Technol; 2024 Jun; 401():130674. PubMed ID: 38642663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient biosynthesis of (R)-mandelic acid from styrene oxide by an adaptive evolutionary Gluconobacter oxydans STA.
    Liu F; Zhou J; Hu M; Chen Y; Han J; Pan X; You J; Xu M; Yang T; Shao M; Zhang X; Rao Z
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):8. PubMed ID: 36639820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FNR-Type Regulator GoxR of the Obligatorily Aerobic Acetic Acid Bacterium
    Schweikert S; Kranz A; Yakushi T; Filipchyk A; Polen T; Etterich H; Bringer S; Bott M
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined evolutionary and metabolic engineering improve 2-keto-L-gulonic acid production in Gluconobacter oxydans WSH-004.
    Li D; Liu L; Qin Z; Yu S; Zhou J
    Bioresour Technol; 2022 Jun; 354():127107. PubMed ID: 35381333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Xylitol Production from D-Arabitol by Enhancing the Coenzyme Regeneration Efficiency of the Pentose Phosphate Pathway in Gluconobacter oxydans.
    Li S; Zhang J; Xu H; Feng X
    J Agric Food Chem; 2016 Feb; 64(5):1144-50. PubMed ID: 26727541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Draft genome sequence of Gluconobacter oxydans WSH-003, a strain that is extremely tolerant of saccharides and alditols.
    Gao L; Zhou J; Liu J; Du G; Chen J
    J Bacteriol; 2012 Aug; 194(16):4455-6. PubMed ID: 22843589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of L-Erythrose by Assembly of Two Key Enzymes in Gluconobacter oxydans.
    Zou X; Lin J; Mao X; Zhao S; Ren Y
    J Agric Food Chem; 2017 Sep; 65(35):7721-7725. PubMed ID: 28707464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective oxidation of benzyl alcohol using engineered Gluconobacter oxydans in biphasic system.
    Wu J; Li MH; Lin JP; Wei DZ
    Curr Microbiol; 2011 Apr; 62(4):1123-7. PubMed ID: 21140150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular targeting of an active endoxylanase by a TolB negative mutant of Gluconobacter oxydans.
    Kosciow K; Domin C; Schweiger P; Deppenmeier U
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):989-99. PubMed ID: 27097633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity.
    Volmer J; Neumann C; Bühler B; Schmid A
    Appl Environ Microbiol; 2014 Oct; 80(20):6539-48. PubMed ID: 25128338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
    Herrmann U; Merfort M; Jeude M; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of HPr by HPr kinase in Gluconobacter oxydans 621H.
    Zhang P; Ma Y; Wang F; Wei D
    Protein Pept Lett; 2014 Jun; 21(6):597-601. PubMed ID: 24521221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-bound sorbitol dehydrogenase is responsible for the unique oxidation of D-galactitol to L-xylo-3-hexulose and D-tagatose in Gluconobacter oxydans.
    Xu Y; Ji L; Xu S; Bilal M; Ehrenreich A; Deng Z; Cheng H
    Biochim Biophys Acta Gen Subj; 2023 Feb; 1867(2):130289. PubMed ID: 36503080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis.
    Hu Y; Wan H; Li J; Zhou J
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1039-47. PubMed ID: 25952118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pyrroloquinoline quinone synthesis genes of Gluconobacter oxydans.
    Felder M; Gupta A; Verma V; Kumar A; Qazi GN; Cullum J
    FEMS Microbiol Lett; 2000 Dec; 193(2):231-6. PubMed ID: 11111029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized synthesis of L-sorbose by C(5)-dehydrogenation of D-sorbitol with Gluconobacter oxydans.
    De Wulf P; Soetaert W; Vandamme EJ
    Biotechnol Bioeng; 2000 Aug; 69(3):339-43. PubMed ID: 10861414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-Erythrulose production with a multideletion strain of Gluconobacter oxydans.
    Burger C; Kessler C; Gruber S; Ehrenreich A; Liebl W; Weuster-Botz D
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4393-4404. PubMed ID: 31001743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.
    Yuan J; Wu M; Lin J; Yang L
    J Biosci Bioeng; 2016 Jul; 122(1):10-6. PubMed ID: 26896860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.