These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38642774)
21. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria. Li Y; Hu X; Ren B Water Sci Technol; 2016; 73(9):2039-51. PubMed ID: 27148704 [TBL] [Abstract][Full Text] [Related]
22. Enhancement of sulfate reduction activity using granular sludge in anaerobic treatment of acid mine drainage. La HJ; Kim KH; Quan ZX; Cho YG; Lee ST Biotechnol Lett; 2003 Mar; 25(6):503-8. PubMed ID: 12882279 [TBL] [Abstract][Full Text] [Related]
23. Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor. Bijmans MF; Dopson M; Ennin F; Lens PN; Buisman CJ J Microbiol Biotechnol; 2008 Nov; 18(11):1809-18. PubMed ID: 19047826 [TBL] [Abstract][Full Text] [Related]
24. Long-term performance of a UASB reactor treating acid mine drainage: effects of sulfate loading rate, hydraulic retention time, and COD/SO Cunha MP; Ferraz RM; Sancinetti GP; Rodriguez RP Biodegradation; 2019 Feb; 30(1):47-58. PubMed ID: 30406872 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode. Teng W; Liu G; Luo H; Zhang R; Xiang Y J Hazard Mater; 2016 Mar; 304():159-65. PubMed ID: 26561748 [TBL] [Abstract][Full Text] [Related]
26. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction. Thabet OB; Bouallagui H; Cayol JL; Ollivier B; Fardeau ML; Hamdi M J Hazard Mater; 2009 Aug; 167(1-3):1133-40. PubMed ID: 19272702 [TBL] [Abstract][Full Text] [Related]
27. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria. Wang A; Ren N; Wang X; Lee D J Hazard Mater; 2008 Jun; 154(1-3):1060-5. PubMed ID: 18093734 [TBL] [Abstract][Full Text] [Related]
28. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron. Bai H; Kang Y; Quan H; Han Y; Sun J; Feng Y J Environ Manage; 2013 Nov; 129():350-6. PubMed ID: 23981707 [TBL] [Abstract][Full Text] [Related]
29. Desulfosporosinus spp. were the most predominant sulfate-reducing bacteria in pilot- and laboratory-scale passive bioreactors for acid mine drainage treatment. Sato Y; Hamai T; Hori T; Aoyagi T; Inaba T; Kobayashi M; Habe H; Sakata T Appl Microbiol Biotechnol; 2019 Sep; 103(18):7783-7793. PubMed ID: 31388728 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode. Blázquez E; Gabriel D; Baeza JA; Guisasola A Water Res; 2017 Oct; 123():301-310. PubMed ID: 28675843 [TBL] [Abstract][Full Text] [Related]
31. Current advances of chlorinated organics degradation by bioelectrochemical systems: a review. Geng A; Zhang C; Wang J; Zhang X; Qiu W; Wang L; Xi J; Yang B World J Microbiol Biotechnol; 2024 May; 40(7):208. PubMed ID: 38767676 [TBL] [Abstract][Full Text] [Related]
32. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. Lu L; Yazdi H; Jin S; Zuo Y; Fallgren PH; Ren ZJ J Hazard Mater; 2014 Jun; 274():8-15. PubMed ID: 24762696 [TBL] [Abstract][Full Text] [Related]
33. Simultaneous nitrate and sulfide removal using a bio-electrochemical system. Bayrakdar A; Tilahun E; Çalli B Bioelectrochemistry; 2019 Oct; 129():228-234. PubMed ID: 31226523 [TBL] [Abstract][Full Text] [Related]
34. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor. Vieira BF; Couto PT; Sancinetti GP; Klein B; van Zyl D; Rodriguez RP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):793-7. PubMed ID: 27222283 [TBL] [Abstract][Full Text] [Related]
35. Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors. Suárez JI; Aybar M; Nancucheo I; Poch B; Martínez P; Rittmann BE; Schwarz A Chemosphere; 2020 Apr; 244():125508. PubMed ID: 31812042 [TBL] [Abstract][Full Text] [Related]
36. Biotreatment of sulfate-rich wastewater in an anaerobic/micro-aerobic bioreactor system. Chuang SH; Pai TY; Horng RY Environ Technol; 2005 Sep; 26(9):993-1001. PubMed ID: 16196408 [TBL] [Abstract][Full Text] [Related]
37. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826 [TBL] [Abstract][Full Text] [Related]
38. Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer. Hunkeler D; Höhener P; Zeyer J J Contam Hydrol; 2002 Dec; 59(3-4):231-45. PubMed ID: 12487415 [TBL] [Abstract][Full Text] [Related]
39. Characterization of sulfate-reducing granular sludge in the SANI(®) process. Hao T; Wei L; Lu H; Chui H; Mackey HR; van Loosdrecht MC; Chen G Water Res; 2013 Dec; 47(19):7042-52. PubMed ID: 24200003 [TBL] [Abstract][Full Text] [Related]
40. Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment. Flynn TM; Antonopoulos DA; Skinner KA; Brulc JM; Johnston E; Boyanov MI; Kwon MJ; Kemner KM; O'Loughlin EJ PLoS One; 2021; 16(5):e0251883. PubMed ID: 34014980 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]