These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38643126)

  • 21. Antagonistic Pleiotropy in the Bifunctional Surface Protein FadL (OmpP1) during Adaptation of Haemophilus influenzae to Chronic Lung Infection Associated with Chronic Obstructive Pulmonary Disease.
    Moleres J; Fernández-Calvet A; Ehrlich RL; Martí S; Pérez-Regidor L; Euba B; Rodríguez-Arce I; Balashov S; Cuevas E; Liñares J; Ardanuy C; Martín-Santamaría S; Ehrlich GD; Mell JC; Garmendia J
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of sputum microbial flora in chronic obstructive pulmonary disease patients with different phenotypes during acute exacerbations.
    Mao X; Li Y; Shi P; Zhu Z; Sun J; Xue Y; Wan Z; Yang D; Ma T; Wang J; Zhu R
    Microb Pathog; 2023 Nov; 184():106335. PubMed ID: 37673353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sputum Microbiome Dynamics in Chronic Obstructive Pulmonary Disease Patients during an Exacerbation Event and Post-Stabilization.
    López Caro JC; Santibáñez M; García Rivero JL; Villanueva M; Sainz J; González Astorqui P; Hierro M; Rodríguez Porres M; Paras Bravo P; Mira A; Rodriguez JC; Galiana A;
    Respiration; 2019; 98(5):447-454. PubMed ID: 31437842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The sputum microbiome, airway inflammation, and mortality in chronic obstructive pulmonary disease.
    Dicker AJ; Huang JTJ; Lonergan M; Keir HR; Fong CJ; Tan B; Cassidy AJ; Finch S; Mullerova H; Miller BE; Tal-Singer R; Chalmers JD
    J Allergy Clin Immunol; 2021 Jan; 147(1):158-167. PubMed ID: 32353489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease.
    Molyneaux PL; Mallia P; Cox MJ; Footitt J; Willis-Owen SA; Homola D; Trujillo-Torralbo MB; Elkin S; Kon OM; Cookson WO; Moffatt MF; Johnston SL
    Am J Respir Crit Care Med; 2013 Nov; 188(10):1224-31. PubMed ID: 23992479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High serum granulocyte-colony stimulating factor characterises neutrophilic COPD exacerbations associated with dysbiosis.
    Chakrabarti A; Mar JS; Choy DF; Cao Y; Rathore N; Yang X; Tew GW; Li O; Woodruff PG; Brightling CE; Grimbaldeston M; Christenson SA; Bafadhel M; Rosenberger CM
    ERJ Open Res; 2021 Jul; 7(3):. PubMed ID: 34350278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease.
    Hurst JR; Perera WR; Wilkinson TM; Donaldson GC; Wedzicha JA
    Am J Respir Crit Care Med; 2006 Jan; 173(1):71-8. PubMed ID: 16179639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial burden and viral exacerbations in a longitudinal multicenter COPD cohort.
    Bouquet J; Tabor DE; Silver JS; Nair V; Tovchigrechko A; Griffin MP; Esser MT; Sellman BR; Jin H
    Respir Res; 2020 Mar; 21(1):77. PubMed ID: 32228581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endotype-driven prediction of acute exacerbations in chronic obstructive pulmonary disease (EndAECOPD): protocol for a prospective cohort study.
    Xiao W; Du LY; Mao B; Miao TW; Fu JJ
    BMJ Open; 2019 Nov; 9(11):e034592. PubMed ID: 31690612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease.
    Rosell A; Monsó E; Soler N; Torres F; Angrill J; Riise G; Zalacaín R; Morera J; Torres A
    Arch Intern Med; 2005 Apr; 165(8):891-7. PubMed ID: 15851640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic mannose binding lectin deficiency is associated with airway microbiota diversity and reduced exacerbation frequency in COPD.
    Dicker AJ; Crichton ML; Cassidy AJ; Brady G; Hapca A; Tavendale R; Einarsson GG; Furrie E; Elborn JS; Schembri S; Marshall SE; Palmer CNA; Chalmers JD
    Thorax; 2018 Jun; 73(6):510-518. PubMed ID: 29101284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations.
    Patel IS; Seemungal TA; Wilks M; Lloyd-Owen SJ; Donaldson GC; Wedzicha JA
    Thorax; 2002 Sep; 57(9):759-64. PubMed ID: 12200518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The sputum microbiome is distinct between COPD and health, independent of smoking history.
    Haldar K; George L; Wang Z; Mistry V; Ramsheh MY; Free RC; John C; Reeve NF; Miller BE; Tal-Singer R; Webb AJ; Brookes AJ; Tobin MD; Singh D; Donaldson GC; Wedzicha JA; Brown JR; Barer MR; Brightling CE
    Respir Res; 2020 Jul; 21(1):183. PubMed ID: 32664956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lung microbiome and cytokine profiles in different disease states of COPD: a cohort study.
    Xue Q; Xie Y; He Y; Yu Y; Fang G; Yu W; Wu J; Li J; Zhao L; Deng X; Li R; Wang F; Zheng Y; Gao Z
    Sci Rep; 2023 Apr; 13(1):5715. PubMed ID: 37029178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of pulmonary microorganisms in the development of chronic obstructive pulmonary disease.
    Liu J; Ran Z; Wang F; Xin C; Xiong B; Song Z
    Crit Rev Microbiol; 2021 Feb; 47(1):1-12. PubMed ID: 33040638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease.
    Dicker AJ; Crichton ML; Pumphrey EG; Cassidy AJ; Suarez-Cuartin G; Sibila O; Furrie E; Fong CJ; Ibrahim W; Brady G; Einarsson GG; Elborn JS; Schembri S; Marshall SE; Palmer CNA; Chalmers JD
    J Allergy Clin Immunol; 2018 Jan; 141(1):117-127. PubMed ID: 28506850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cardiovascular risk, myocardial injury, and exacerbations of chronic obstructive pulmonary disease.
    Patel AR; Kowlessar BS; Donaldson GC; Mackay AJ; Singh R; George SN; Garcha DS; Wedzicha JA; Hurst JR
    Am J Respir Crit Care Med; 2013 Nov; 188(9):1091-9. PubMed ID: 24033321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relevance of lower airway bacterial colonization, airway inflammation, and pulmonary function in the stable stage of chronic obstructive pulmonary disease.
    Zhang M; Li Q; Zhang XY; Ding X; Zhu D; Zhou X
    Eur J Clin Microbiol Infect Dis; 2010 Dec; 29(12):1487-93. PubMed ID: 20725845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chronic obstructive pulmonary disease upper airway microbiome is associated with select clinical characteristics.
    Pragman AA; Knutson KA; Gould TJ; Hodgson SW; Isaacson RE; Reilly CS; Wendt CH
    PLoS One; 2019; 14(7):e0219962. PubMed ID: 31335912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sputum sample positivity for Haemophilus influenzae or Moraxella catarrhalis in acute exacerbations of chronic obstructive pulmonary disease: evaluation of association with positivity at earlier stable disease timepoints.
    Malvisi L; Taddei L; Yarraguntla A; Wilkinson TMA; Arora AK;
    Respir Res; 2021 Feb; 22(1):67. PubMed ID: 33627095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.