BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38643189)

  • 1. Phosphoproteomic analysis reveals changes in A-Raf-related protein phosphorylation in response to Toxoplasma gondii infection in porcine macrophages.
    Su D; Zhu S; Xu K; Hou Z; Hao F; Xu F; Lin Y; Zhu Y; Liu D; Duan Q; Zhang X; Yuan Y; Xu J; Tao J
    Parasit Vectors; 2024 Apr; 17(1):191. PubMed ID: 38643189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression profile of microRNAs in porcine alveolar macrophages after Toxoplasma gondii infection.
    Li S; Yang J; Wang L; Du F; Zhao J; Fang R
    Parasit Vectors; 2019 Jan; 12(1):65. PubMed ID: 30696482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxoplasma gondii infection regulates apoptosis of host cells via miR-185/ARAF axis.
    Su D; Zhu S; Hou Z; Hao F; Xu K; Xu F; Zhu Y; Liu D; Xu J; Tao J
    Parasit Vectors; 2023 Oct; 16(1):371. PubMed ID: 37858158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain proteomic differences between wild-type and CD44- mice induced by chronic Toxoplasma gondii infection.
    Yang J; Du F; Zhou X; Wang L; Li S; Fang R; Zhao J
    Parasitol Res; 2018 Aug; 117(8):2623-2633. PubMed ID: 29948204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analyses reveal distinct response of porcine macrophages to Toxoplasma gondii infection.
    Cui J; Shen B
    Parasitol Res; 2020 Jun; 119(6):1819-1828. PubMed ID: 32399721
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Yang J; He Z; Chen C; Li S; Qian J; Zhao J; Fang R
    Front Immunol; 2021; 12():696061. PubMed ID: 34322124
    [No Abstract]   [Full Text] [Related]  

  • 7. DNA double-strand breaks in the Toxoplasma gondii-infected cells by the action of reactive oxygen species.
    Zhuang H; Yao C; Zhao X; Chen X; Yang Y; Huang S; Pan L; Du A; Yang Y
    Parasit Vectors; 2020 Sep; 13(1):490. PubMed ID: 32988387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a Toxoplasma gondii calcium calmodulin-dependent protein kinase homolog.
    Kato K; Sugi T; Takemae H; Takano R; Gong H; Ishiwa A; Horimoto T; Akashi H
    Parasit Vectors; 2016 Jul; 9(1):405. PubMed ID: 27444499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxoplasma gondii and Neospora caninum induce different host cell responses at proteome-wide phosphorylation events; a step forward for uncovering the biological differences between these closely related parasites.
    Al-Bajalan MMM; Xia D; Armstrong S; Randle N; Wastling JM
    Parasitol Res; 2017 Oct; 116(10):2707-2719. PubMed ID: 28803361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired chromatin remodelling at STAT1-regulated promoters leads to global unresponsiveness of Toxoplasma gondii-infected macrophages to IFN-γ.
    Lang C; Hildebrandt A; Brand F; Opitz L; Dihazi H; Lüder CG
    PLoS Pathog; 2012 Jan; 8(1):e1002483. PubMed ID: 22275866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Phosphoproteomic Analysis of Sporulated Oocysts and Tachyzoites of
    Wang ZX; Che L; Hu RS; Sun XL
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164288
    [No Abstract]   [Full Text] [Related]  

  • 12. Systematic identification of the lysine lactylation in the protozoan parasite Toxoplasma gondii.
    Zhao W; Yu H; Liu X; Wang T; Yao Y; Zhou Q; Zheng X; Tan F
    Parasit Vectors; 2022 May; 15(1):180. PubMed ID: 35610722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylome analysis of the feline small intestine following Toxoplasma gondii infection.
    Meng YM; Zhai BT; Elsheikha HM; Xie SC; Wang ZX; Zhao Q; Zhu XQ; He JJ
    Parasitol Res; 2020 Nov; 119(11):3649-3657. PubMed ID: 32951143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of PI 3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis.
    Quan JH; Cha GH; Zhou W; Chu JQ; Nishikawa Y; Lee YH
    Exp Parasitol; 2013 Apr; 133(4):462-71. PubMed ID: 23333591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the serum peptidome associated with Toxoplasma gondii infection.
    Zhou CX; Xie SC; Li MY; Huang CQ; Zhou HY; Cong H; Zhu XQ; Cong W
    J Proteomics; 2020 Jun; 222():103805. PubMed ID: 32387797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Omics Studies Demonstrate
    Hargrave KE; Woods S; Millington O; Chalmers S; Westrop GD; Roberts CW
    Front Cell Infect Microbiol; 2019; 9():309. PubMed ID: 31572687
    [No Abstract]   [Full Text] [Related]  

  • 17. Apoptosis and its modulation during infection with Toxoplasma gondii: molecular mechanisms and role in pathogenesis.
    Lüder CG; Gross U
    Curr Top Microbiol Immunol; 2005; 289():219-37. PubMed ID: 15791958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of urine metabolome of BALB/c mouse infected with an avirulent strain of Toxoplasma gondii.
    Zhou CX; Li LY; Huang CQ; Guo XD; An XD; Luo FF; Cong W
    Parasit Vectors; 2022 Jul; 15(1):271. PubMed ID: 35906695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxoplasma gondii protects against H(2)O(2) -induced apoptosis in ARPE-19 cells through the transcriptional regulation of apoptotic elements and downregulation of the p38 MAPK pathway.
    Choi SH; Park SJ; Cha GH; Quan JH; Chang NS; Ahn MH; Shin DW; Lee YH
    Acta Ophthalmol; 2011 Jun; 89(4):e350-6. PubMed ID: 21385331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Tim-3 in Decidual Macrophage Functional Polarization During Abnormal Pregnancy With
    Zhang D; Ren L; Zhao M; Yang C; Liu X; Zhang H; Jiang Y; Sun X; Li T; Cui L; Hu X
    Front Immunol; 2019; 10():1550. PubMed ID: 31354713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.