BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38643372)

  • 1. The gut microbiome promotes locomotion of Drosophila larvae via octopamine signaling.
    Hu J; Bi R; Luo Y; Wu K; Jin S; Liu Z; Jia Y; Mao CX
    Insect Sci; 2024 Apr; ():. PubMed ID: 38643372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gut microbial factor modulates locomotor behaviour in Drosophila.
    Schretter CE; Vielmetter J; Bartos I; Marka Z; Marka S; Argade S; Mazmanian SK
    Nature; 2018 Nov; 563(7731):402-406. PubMed ID: 30356215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gut microbiome modulates Drosophila aggression through octopamine signaling.
    Jia Y; Jin S; Hu K; Geng L; Han C; Kang R; Pang Y; Ling E; Tan EK; Pan Y; Liu W
    Nat Commun; 2021 May; 12(1):2698. PubMed ID: 33976215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae.
    Saraswati S; Fox LE; Soll DR; Wu CF
    J Neurobiol; 2004 Mar; 58(4):425-41. PubMed ID: 14978721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of octopamine and tyramine in Drosophila larval locomotion.
    Selcho M; Pauls D; El Jundi B; Stocker RF; Thum AS
    J Comp Neurol; 2012 Nov; 520(16):3764-85. PubMed ID: 22627970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trace amines differentially regulate adult locomotor activity, cocaine sensitivity, and female fertility in Drosophila melanogaster.
    Hardie SL; Zhang JX; Hirsh J
    Dev Neurobiol; 2007 Sep; 67(10):1396-405. PubMed ID: 17638385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Promoting Effect of Gut Microbiota on Growth and Development of Red Palm Weevil,
    Habineza P; Muhammad A; Ji T; Xiao R; Yin X; Hou Y; Shi Z
    Front Microbiol; 2019; 10():1212. PubMed ID: 31191510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs.
    Clark MQ; McCumsey SJ; Lopez-Darwin S; Heckscher ES; Doe CQ
    G3 (Bethesda); 2016 Jul; 6(7):2023-31. PubMed ID: 27172197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gut microbiota affects development and olfactory behavior in
    Qiao H; Keesey IW; Hansson BS; Knaden M
    J Exp Biol; 2019 Mar; 222(Pt 5):. PubMed ID: 30679242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust
    Schützler N; Girwert C; Hügli I; Mohana G; Roignant JY; Ryglewski S; Duch C
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3805-3810. PubMed ID: 30808766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeated Failure in Reward Pursuit Alters Innate Drosophila Larval Behaviors.
    Fei Y; Zhu D; Sun Y; Gong C; Huang S; Gong Z
    Neurosci Bull; 2018 Dec; 34(6):901-911. PubMed ID: 29951979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster.
    Chen A; Ng F; Lebestky T; Grygoruk A; Djapri C; Lawal HO; Zaveri HA; Mehanzel F; Najibi R; Seidman G; Murphy NP; Kelly RL; Ackerson LC; Maidment NT; Jackson FR; Krantz DE
    Genetics; 2013 Jan; 193(1):159-76. PubMed ID: 23086220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Drosophila octopamine receptor neuronal expression using MiMIC-converted Gal4 lines.
    McKinney HM; Sherer LM; Williams JL; Certel SJ; Stowers RS
    J Comp Neurol; 2020 Sep; 528(13):2174-2194. PubMed ID: 32060912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The
    Sannino DR; Dobson AJ; Edwards K; Angert ER; Buchon N
    mBio; 2018 Mar; 9(2):. PubMed ID: 29511074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Links between the gut microbiota, metabolism, and host behavior.
    Schretter CE
    Gut Microbes; 2020; 11(2):245-248. PubMed ID: 31345081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila-associated bacteria differentially shape the nutritional requirements of their host during juvenile growth.
    Consuegra J; Grenier T; Baa-Puyoulet P; Rahioui I; Akherraz H; Gervais H; Parisot N; da Silva P; Charles H; Calevro F; Leulier F
    PLoS Biol; 2020 Mar; 18(3):e3000681. PubMed ID: 32196485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of behaviors and segmental coordination during larval locomotion is disrupted by nuclear polyglutamine inclusions in a new Drosophila Huntington's disease-like model.
    Nishimura Y; Yalgin C; Akimoto S; Doumanis J; Sasajima R; Nukina N; Miyakawa H; Moore AW; Morimoto T
    J Neurogenet; 2010 Dec; 24(4):194-206. PubMed ID: 21087194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gut microbiome of Helicoverpa armigera enhances immune response to baculovirus infection via suppression of Duox-mediated reactive oxygen species.
    Tian Z; Guo X; Michaud JP; Zha M; Zhu L; Liu X; Liu X
    Pest Manag Sci; 2023 Oct; 79(10):3611-3621. PubMed ID: 37184157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octopamine-mediated circuit mechanism underlying controlled appetite for palatable food in Drosophila.
    Zhang T; Branch A; Shen P
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15431-6. PubMed ID: 24003139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactic acid bacteria feeding reversed the malformed eye structures and ameliorated gut microbiota profiles of Drosophila melanogaster Alzheimer's disease model.
    Liu G; Tan FH; Lau SA; Jaafar MH; Chung FY; Azzam G; Liong MT; Li Y
    J Appl Microbiol; 2022 Apr; 132(4):3155-3167. PubMed ID: 32640111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.