These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38643520)

  • 21. Corrosion mitigation in desalination plants by ammonium-based ionic liquid.
    Deyab MA; Mohsen Q
    Sci Rep; 2021 Nov; 11(1):21435. PubMed ID: 34728716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Some aspects concerning the electrochemical corrosion of the Gaudent-S dental alloy].
    Forna N; Burlui V; Aelenei N; Nemţoi G; Indrei A; Aelenei D; Mârţu S
    Rev Med Chir Soc Med Nat Iasi; 2001; 105(1):151-6. PubMed ID: 12092144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection.
    Liduino V; Galvão M; Brasil S; Sérvulo E
    Colloids Surf B Biointerfaces; 2021 Jun; 202():111701. PubMed ID: 33756296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corrosion Behavior on 20# Pipeline Steel by Sulfate-Reducing Bacteria in Simulated NaCl Alkali/Surfactant/Polymer Produced Solution.
    Zhang L; Yu X; Sun H; Ge Y; Wang C; Li L; Kang J; Qian H; Gao Q
    ACS Omega; 2023 Apr; 8(15):13955-13966. PubMed ID: 37091408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the traditional and non-traditional sulfate-reducing bacteria associated with corroded ship hull.
    Alasvand Zarasvand K; Ravishankar Rai V
    3 Biotech; 2016 Dec; 6(2):197. PubMed ID: 28330269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anaerobic biodegradation of biofuels and their impact on the corrosion of a Cu-Ni alloy in marine environments.
    Liang R; Aydin E; Le Borgne S; Sunner J; Duncan KE; Suflita JM
    Chemosphere; 2018 Mar; 195():427-436. PubMed ID: 29274988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Alternating Current and Sulfate-Reducing Bacteria on Corrosion of X80 Pipeline Steel in Soil-Extract Solution.
    Qing Y; Bai Y; Xu J; Wu T; Yan M; Sun C
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Corrosion resistance improvement of NiTi osteosynthesis staples by plasma polymerized tetrafluoroethylene coating.
    Villermaux F; Tabrizian M; Yahia L; Czeremuszkin G; Piron DL
    Biomed Mater Eng; 1996; 6(4):241-54. PubMed ID: 8980833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfate-reducing bacteria lower sulfur-mediated pitting corrosion under conditions of oxygen ingress.
    Johnston SL; Voordouw G
    Environ Sci Technol; 2012 Aug; 46(16):9183-90. PubMed ID: 22823179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Inorganic Metabolites of Sulphate-Reducing Bacteria on the Corrosion of AZ31B and AZ63B Magnesium Alloy in 3.5 wt.% NaCl Solution.
    Li J; Liu X; Zhang J; Zhang R; Wang M; Sand W; Duan J; Zhu Q; Zhai S; Hou B
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The electrochemical behavior and surface analysis of Ti50Ni47.2Co2.8 alloy for orthodontic use.
    Wang QY; Zheng YF
    Dent Mater; 2008 Sep; 24(9):1207-11. PubMed ID: 18336899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial Corrosion in Orthodontics.
    Gopalakrishnan U; Felicita S; Ronald B; Appavoo E; Patil S
    J Contemp Dent Pract; 2022 Jun; 23(6):569-571. PubMed ID: 36259293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption Characteristics between Ti Atoms of TiO
    Zhu S; Wang K; Ma H; Dong P
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes.
    Dou W; Pu Y; Han X; Song Y; Chen S; Gu T
    Bioelectrochemistry; 2020 Jun; 133():107478. PubMed ID: 32036296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of inhibition effect on microbiologically influenced corrosion of Ti-5Cu alloy against marine Bacillus vietnamensis biofilm.
    Arroussi M; Zhao J; Bai C; Zhang S; Xia Z; Jia Q; Yang K; Yang R
    Bioelectrochemistry; 2023 Feb; 149():108265. PubMed ID: 36423527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.
    Xin Y; Huo K; Tao H; Tang G; Chu PK
    Acta Biomater; 2008 Nov; 4(6):2008-15. PubMed ID: 18571486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microstructure and Corrosion Behavior of (CoCrFeNi)
    Wang W; Qi W; Xie L; Yang X; Li J; Zhang Y
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30818746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of oxygen concentration on the corrosion behavior of high entropy alloy AlCoCrFeNi in simulated deep sea.
    Wang J; Wen W; Xie F; Wu B; Yang Y; Cheng J; Zhang S; Zhang X
    Heliyon; 2024 Jun; 10(12):e32793. PubMed ID: 39022035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial corrosion behavior of pipeline steels in simulation environment of natural gas transportation pipeline.
    Zhu L; Tang Y; Jiang J; Zhang Y; Wu M; Tang C; Wu T; Zhao K
    RSC Adv; 2023 Dec; 13(51):36168-36180. PubMed ID: 38090086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Electrochemical Monitoring of the Crevice Corrosion Process of the 7075-T651 Aluminium Alloy in Acidic NaCl and NaNO
    Wang S; Cao Y; Liu X; Cai G
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.