BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38643595)

  • 1. Advancing cancer driver gene detection via Schur complement graph augmentation and independent subspace feature extraction.
    Ma X; Li Z; Du Z; Xu Y; Chen Y; Zhuo L; Fu X; Liu R
    Comput Biol Med; 2024 May; 174():108484. PubMed ID: 38643595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion.
    Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S
    Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in computational methods for identifying cancer driver genes.
    Wang Y; Zhou B; Ru J; Meng X; Wang Y; Liu W
    Math Biosci Eng; 2023 Dec; 20(12):21643-21669. PubMed ID: 38124614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks.
    Hasibi R; Michoel T
    BMC Bioinformatics; 2021 Oct; 22(1):525. PubMed ID: 34706640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empowering Graph Neural Networks with Block-Based Dual Adaptive Deep Adjustment for Drug Resistance-Related NcRNA Discovery.
    Zhang Y; Li X
    J Chem Inf Model; 2024 Apr; 64(8):3537-3547. PubMed ID: 38523272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GDCL-NcDA: identifying non-coding RNA-disease associations via contrastive learning between deep graph learning and deep matrix factorization.
    Ai N; Liang Y; Yuan H; Ouyang D; Xie S; Liu X
    BMC Genomics; 2023 Jul; 24(1):424. PubMed ID: 37501127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MS-BACL: enhancing metabolic stability prediction through bond graph augmentation and contrastive learning.
    Wang T; Li Z; Zhuo L; Chen Y; Fu X; Zou Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38555479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SGCLDGA: unveiling drug-gene associations through simple graph contrastive learning.
    Fan Y; Zhang C; Hu X; Huang Z; Xue J; Deng L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning framework for predicting disease-gene associations with functional modules and graph augmentation.
    Jia X; Luo W; Li J; Xing J; Sun H; Wu S; Su X
    BMC Bioinformatics; 2024 Jun; 25(1):214. PubMed ID: 38877401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-view contrastive heterogeneous graph attention network for lncRNA-disease association prediction.
    Zhao X; Wu J; Zhao X; Yin M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36528809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA-Disease Associations via Graph Convolutional Network and Contrastive Learning.
    Zhang L; Chen M; Hu X; Deng L
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Community-CL: An Enhanced Community Detection Algorithm Based on Contrastive Learning.
    Huang Z; Xu W; Zhuo X
    Entropy (Basel); 2023 May; 25(6):. PubMed ID: 37372208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GATLGEMF: A graph attention model with line graph embedding multi-complex features for ncRNA-protein interactions prediction.
    Yan J; Qu W; Li X; Wang R; Tan J
    Comput Biol Chem; 2024 Feb; 108():108000. PubMed ID: 38070456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.
    Pang W; Chen M; Qin Y
    BMC Bioinformatics; 2024 May; 25(1):182. PubMed ID: 38724920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational framework for predicting novel drug indications using graph convolutional network with contrastive learning.
    Luo Y; Shan W; Peng L; Luo L; Ding P; Liang W
    IEEE J Biomed Health Inform; 2024 Apr; PP():. PubMed ID: 38607707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting associations between CircRNA and diseases through structure-aware graph transformer and path-integral convolution.
    Wu J; Lu P; Zhang W
    Anal Biochem; 2024 Sep; 692():115554. PubMed ID: 38710353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.