BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38643702)

  • 1. Radon deficit technique applied to the study of the ageing of a spilled LNAPL in a shallow aquifer.
    Briganti A; Voltaggio M; Carusi C; Rainaldi E
    J Contam Hydrol; 2024 Apr; 263():104342. PubMed ID: 38643702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using groundwater monitoring wells for rapid application of soil gas radon deficit technique to evaluate residual LNAPL.
    Cecconi A; Verginelli I; Baciocchi R; Lanari C; Villani F; Bonfedi G
    J Contam Hydrol; 2023 Sep; 258():104241. PubMed ID: 37690392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertical Light Non-Aqueous Phase Liquid (LNAPL) distribution by Rn prospecting in monitoring wells.
    Briganti A; Voltaggio M; Rainaldi E; Carusi C
    Environ Monit Assess; 2023 Dec; 196(1):19. PubMed ID: 38060038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer.
    Cohen GJV; Jousse F; Luze N; Höhener P; Atteia O
    J Contam Hydrol; 2016 Sep; 192():20-34. PubMed ID: 27341018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of advection on the soil gas radon deficit technique for the quantification of LNAPL.
    Cecconi A; Verginelli I; Barrio-Parra F; De Miguel E; Baciocchi R
    Sci Total Environ; 2023 Jun; 875():162619. PubMed ID: 36878290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of soil gas radon as an in situ partitioning tracer for quantifying LNAPL contamination.
    Cecconi A; Verginelli I; Baciocchi R
    Sci Total Environ; 2022 Feb; 806(Pt 2):150593. PubMed ID: 34592297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1D_RnDPM: A freely available
    Barrio-Parra F; Hidalgo A; Izquierdo-Díaz M; Arévalo-Lomas L; De Miguel E
    Sci Total Environ; 2022 Feb; 807(Pt 2):150815. PubMed ID: 34627916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Groundwater chemistry and radon-222 distribution in Jerba Island, Tunisia.
    Telahigue F; Agoubi B; Souid F; Kharroubi A
    J Environ Radioact; 2018 Feb; 182():74-84. PubMed ID: 29202372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radon hazard in shallow groundwaters II: dry season fracture drainage and alluvial fan upwelling.
    Tommasone FP; De Francesco S; Cuoco E; Verrengia G; Santoro D; Tedesco D
    Sci Total Environ; 2011 Aug; 409(18):3352-63. PubMed ID: 21696803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of NAPL mixture and alteration on
    Le Meur M; Cohen GJV; Laurent M; Höhener P; Atteia O
    Sci Total Environ; 2021 Oct; 791():148210. PubMed ID: 34412393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the benefits of in-time and in-place responses to remediate acute LNAPL release incidents.
    Sookhak Lari K; King A; Rayner JL; Davis GB
    J Environ Manage; 2021 Jun; 287():112356. PubMed ID: 33765523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using ²²²Rn as a naturally occurring tracer to estimate NAPL contamination in an aquifer.
    Yoon YY; Koh DC; Lee KY; Cho SY; Yang JH; Lee KK
    Appl Radiat Isot; 2013 Nov; 81():233-7. PubMed ID: 23602707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous concentrations of arsenic, fluoride and radon in volcanic-sedimentary aquifers from central Italy: Quality indexes for management of the water resource.
    Cinti D; Vaselli O; Poncia PP; Brusca L; Grassa F; Procesi M; Tassi F
    Environ Pollut; 2019 Oct; 253():525-537. PubMed ID: 31330345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of radon partition coefficients between water and organic liquids and their utilization for the assessment of subsurface NAPL contamination.
    Schubert M; Lehmann K; Paschke A
    Sci Total Environ; 2007 Apr; 376(1-3):306-16. PubMed ID: 17307243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability and limitations of the radon-deficit technique for the preliminary assessment of sites contaminated with complex mixtures of organic chemicals: A blind field-test.
    De Miguel E; Barrio-Parra F; Izquierdo-Díaz M; Fernández J; García-González JE; Álvarez R
    Environ Int; 2020 May; 138():105591. PubMed ID: 32120060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analytical model for predicting LNAPL distribution and recovery from multi-layered soils.
    Jeong J; Charbeneau RJ
    J Contam Hydrol; 2014 Jan; 156():52-61. PubMed ID: 24262305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil radon survey to assess NAPL contamination from an ancient spill. Do kerosene vapors affect radon partition ?
    De Simone G; Lucchetti C; Pompilj F; Galli G; Tuccimei P; Curatolo P; Giorgi R
    J Environ Radioact; 2017 May; 171():138-147. PubMed ID: 28249206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ²²²Rn, ²²⁶Ra and hydrochemistry in the Bauru Aquifer System, São José do Rio Preto (SP), Brazil.
    Santos TO; Bonotto DM
    Appl Radiat Isot; 2014 Apr; 86():109-17. PubMed ID: 24531193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulations of radon as an in situ partitioning tracer for quantifying NAPL contamination using push-pull tests.
    Davis BM; Istok JD; Semprini L
    J Contam Hydrol; 2005 Jun; 78(1-2):87-103. PubMed ID: 15949608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radon concentration in drinking water and soil after the September 24, 2019, Mw 5.8 earthquake, Mirpur, Azad Jammu, and Kashmir: an evaluation for potential risk.
    Muhammad S; Ullah R; Turab SA; Khan MY; Khattak NU; Khan MA
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32628-32636. PubMed ID: 32514913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.