These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38644430)
1. Radio-anatomical evaluation of clinical and radiomic profile of multi-parametric magnetic resonance imaging of de novo glioblastoma multiforme. Ahmed HS; Devaraj T; Singhvi M; Dasan TA; Ranganath P J Egypt Natl Canc Inst; 2024 Apr; 36(1):13. PubMed ID: 38644430 [TBL] [Abstract][Full Text] [Related]
2. The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics. Bakas S; Sako C; Akbari H; Bilello M; Sotiras A; Shukla G; Rudie JD; Santamaría NF; Kazerooni AF; Pati S; Rathore S; Mamourian E; Ha SM; Parker W; Doshi J; Baid U; Bergman M; Binder ZA; Verma R; Lustig RA; Desai AS; Bagley SJ; Mourelatos Z; Morrissette J; Watt CD; Brem S; Wolf RL; Melhem ER; Nasrallah MP; Mohan S; O'Rourke DM; Davatzikos C Sci Data; 2022 Jul; 9(1):453. PubMed ID: 35906241 [TBL] [Abstract][Full Text] [Related]
3. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme. Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472 [TBL] [Abstract][Full Text] [Related]
4. Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings. Prasanna P; Patel J; Partovi S; Madabhushi A; Tiwari P Eur Radiol; 2017 Oct; 27(10):4188-4197. PubMed ID: 27778090 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning Radiomics for the Assessment of Telomerase Reverse Transcriptase Promoter Mutation Status in Patients With Glioblastoma Using Multiparametric MRI. Zhang H; Zhang H; Zhang Y; Zhou B; Wu L; Lei Y; Huang B J Magn Reson Imaging; 2023 Nov; 58(5):1441-1451. PubMed ID: 36896953 [TBL] [Abstract][Full Text] [Related]
6. Radiomic Analysis Reveals Prognostic Information in T1-Weighted Baseline Magnetic Resonance Imaging in Patients With Glioblastoma. Ingrisch M; Schneider MJ; Nörenberg D; Negrao de Figueiredo G; Maier-Hein K; Suchorska B; Schüller U; Albert N; Brückmann H; Reiser M; Tonn JC; Ertl-Wagner B Invest Radiol; 2017 Jun; 52(6):360-366. PubMed ID: 28079702 [TBL] [Abstract][Full Text] [Related]
7. A radiomics nomogram based on multiparametric MRI might stratify glioblastoma patients according to survival. Zhang X; Lu H; Tian Q; Feng N; Yin L; Xu X; Du P; Liu Y Eur Radiol; 2019 Oct; 29(10):5528-5538. PubMed ID: 30847586 [TBL] [Abstract][Full Text] [Related]
8. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI. Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Yang D; Rao G; Martinez J; Veeraraghavan A; Rao A Med Phys; 2015 Nov; 42(11):6725-35. PubMed ID: 26520762 [TBL] [Abstract][Full Text] [Related]
10. The LUMIERE dataset: Longitudinal Glioblastoma MRI with expert RANO evaluation. Suter Y; Knecht U; Valenzuela W; Notter M; Hewer E; Schucht P; Wiest R; Reyes M Sci Data; 2022 Dec; 9(1):768. PubMed ID: 36522344 [TBL] [Abstract][Full Text] [Related]
11. Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasets. Um H; Tixier F; Bermudez D; Deasy JO; Young RJ; Veeraraghavan H Phys Med Biol; 2019 Aug; 64(16):165011. PubMed ID: 31272093 [TBL] [Abstract][Full Text] [Related]
12. Achieving imaging and computational reproducibility on multiparametric MRI radiomics features in brain tumor diagnosis: phantom and clinical validation. Cheong EN; Park JE; Park SY; Jung SC; Kim HS Eur Radiol; 2024 Mar; 34(3):2008-2023. PubMed ID: 37665391 [TBL] [Abstract][Full Text] [Related]
13. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T Sun YZ; Yan LF; Han Y; Nan HY; Xiao G; Tian Q; Pu WH; Li ZY; Wei XC; Wang W; Cui GB BMC Med Imaging; 2021 Feb; 21(1):17. PubMed ID: 33535988 [TBL] [Abstract][Full Text] [Related]
14. Volume of high-risk intratumoral subregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma. Cui Y; Ren S; Tha KK; Wu J; Shirato H; Li R Eur Radiol; 2017 Sep; 27(9):3583-3592. PubMed ID: 28168370 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning for Automatic Differential Diagnosis of Primary Central Nervous System Lymphoma and Glioblastoma: Multi-Parametric Magnetic Resonance Imaging Based Convolutional Neural Network Model. Xia W; Hu B; Li H; Shi W; Tang Y; Yu Y; Geng C; Wu Q; Yang L; Yu Z; Geng D; Li Y J Magn Reson Imaging; 2021 Sep; 54(3):880-887. PubMed ID: 33694250 [TBL] [Abstract][Full Text] [Related]
16. Novel Radiomic Features Based on Joint Intensity Matrices for Predicting Glioblastoma Patient Survival Time. Chaddad A; Daniel P; Desrosiers C; Toews M; Abdulkarim B IEEE J Biomed Health Inform; 2019 Mar; 23(2):795-804. PubMed ID: 29993848 [TBL] [Abstract][Full Text] [Related]