BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38644528)

  • 1. A novel design of hip-stem with reduced strain-shielding.
    Loha T; Bhattacharya R; Pal B; Amis AA
    Proc Inst Mech Eng H; 2024 May; 238(5):471-482. PubMed ID: 38644528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty.
    Arabnejad S; Johnston B; Tanzer M; Pasini D
    J Orthop Res; 2017 Aug; 35(8):1774-1783. PubMed ID: 27664796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone preserving level of osteotomy in short-stem total hip arthroplasty does not influence stress shielding dimensions - a comparing finite elements analysis.
    Burchard R; Braas S; Soost C; Graw JA; Schmitt J
    BMC Musculoskelet Disord; 2017 Aug; 18(1):343. PubMed ID: 28784121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.
    Levadnyi I; Awrejcewicz J; Gubaua JE; Pereira JT
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():122-129. PubMed ID: 29100185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of cementless femoral stems based on mid- and long-term radiological evaluation.
    Matsuyama K; Ishidou Y; Guo YM; Kakoi H; Setoguchi T; Nagano S; Kawamura I; Maeda S; Komiya S
    BMC Musculoskelet Disord; 2016 Sep; 17(1):397. PubMed ID: 27642748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive analysis of bio-inspired design of femoral stem on primary and secondary stabilities using mechanoregulatory algorithm.
    Mehboob H; Ahmad F; Tarlochan F; Mehboob A; Chang SH
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2213-2226. PubMed ID: 32388685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical study of failure mechanisms in the cemented resurfaced femur: effects of interface characteristics and bone remodelling.
    Pal B; Gupta S; New AM
    Proc Inst Mech Eng H; 2009 May; 223(4):471-84. PubMed ID: 19499837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the design and properties of porous femoral stems with adjustable stiffness gradient.
    Wang S; Zhou X; Liu L; Shi Z; Hao Y
    Med Eng Phys; 2020 Jul; 81():30-38. PubMed ID: 32505662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite Element Analysis of porously punched prosthetic short stem virtually designed for simulative uncemented Hip Arthroplasty.
    Peng MJ; Chen HY; Hu Y; Ju X; Bai B
    BMC Musculoskelet Disord; 2017 Jul; 18(1):295. PubMed ID: 28693543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of cellular femoral stem for stress shielding and interface stability.
    Rahmat N; Kadkhodapour J; Arbabtafti M
    Int J Artif Organs; 2023 Jun; 46(6):370-377. PubMed ID: 37070137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress and strain distribution in femoral heads for hip resurfacing arthroplasty with different materials: A finite element analysis.
    Vogel D; Wehmeyer M; Kebbach M; Heyer H; Bader R
    J Mech Behav Biomed Mater; 2021 Jan; 113():104115. PubMed ID: 33189013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain shielding inspired re-design of proximal femoral stems for total hip arthroplasty.
    Cilla M; Checa S; Duda GN
    J Orthop Res; 2017 Nov; 35(11):2534-2544. PubMed ID: 28176355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem.
    Jetté B; Brailovski V; Simoneau C; Dumas M; Terriault P
    J Mech Behav Biomed Mater; 2018 Jan; 77():539-550. PubMed ID: 29069636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses.
    Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH
    Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem geometry changes initial femoral fixation stability of a revised press-fit hip prosthesis: A finite element study.
    Russell RD; Huo MH; Rodrigues DC; Kosmopoulos V
    Technol Health Care; 2016 Nov; 24(6):865-872. PubMed ID: 27434281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased stability of short femoral stem through customized distribution of coefficient of friction in porous coating.
    Solou K; Solou AV; Tatani I; Lakoumentas J; Tserpes K; Megas P
    Sci Rep; 2024 May; 14(1):12243. PubMed ID: 38806607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of primary stability on load transfer and bone remodelling within the uncemented resurfaced femur.
    Pal B; Gupta S
    Proc Inst Mech Eng H; 2011 Jun; 225(6):549-61. PubMed ID: 22034739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High survival of uncemented proximally porous-coated titanium alloy femoral stems in osteoporotic bone.
    Meding JB; Galley MR; Ritter MA
    Clin Orthop Relat Res; 2010 Feb; 468(2):441-7. PubMed ID: 19727996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the change in stem length on the load transfer and bone remodelling for a cemented resurfaced femur.
    Pal B; Gupta S; New AM
    J Biomech; 2010 Nov; 43(15):2908-14. PubMed ID: 20728891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of PEEK Coating on Hip Implant Stress Shielding: A Finite Element Analysis.
    Anguiano-Sanchez J; Martinez-Romero O; Siller HR; Diaz-Elizondo JA; Flores-Villalba E; Rodriguez CA
    Comput Math Methods Med; 2016; 2016():6183679. PubMed ID: 27051460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.