BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38644603)

  • 21. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic effects of EDDS and ALA on phytoextraction of cadmium as revealed by biochemical and ultrastructural changes in sunflower (Helianthus annuus L.) tissues.
    Xu L; Li J; Najeeb U; Li X; Pan J; Huang Q; Zhou W; Liang Z
    J Hazard Mater; 2021 Apr; 407():124764. PubMed ID: 33348204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Cd tomato cultivars (Solanum lycopersicum L.) screened in non-saline soils also accumulated low Cd, Zn, and Cu in heavy metal-polluted saline soils.
    Xu ZM; Tan XQ; Mei XQ; Li QS; Zhou C; Wang LL; Ye HJ; Yang P
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27439-27450. PubMed ID: 30039491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil.
    Hassan SE; Hijri M; St-Arnaud M
    N Biotechnol; 2013 Sep; 30(6):780-7. PubMed ID: 23876814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus.
    Turgut C; Katie Pepe M; Cutright TJ
    Environ Pollut; 2004 Sep; 131(1):147-54. PubMed ID: 15210283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A meta-analysis about the accumulation of heavy metals uptake by
    Song W; Wang J; Zhai L; Ge L; Hao S; Shi L; Lian C; Chen C; Shen Z; Chen Y
    Int J Phytoremediation; 2022; 24(7):744-752. PubMed ID: 34493098
    [No Abstract]   [Full Text] [Related]  

  • 27. Effects of microplastics on the phytoremediation of Cd, Pb, and Zn contaminated soils by Solanum photeinocarpum and Lantana camara.
    Yu Q; Gao B; Wu P; Chen M; He C; Zhang X
    Environ Res; 2023 Aug; 231(Pt 3):116312. PubMed ID: 37270082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil.
    Cutright T; Gunda N; Kurt F
    Int J Phytoremediation; 2010 Aug; 12(6):562-73. PubMed ID: 21166281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils.
    Mani D; Kumar C; Patel NK
    Ecotoxicol Environ Saf; 2015 Jan; 111():86-95. PubMed ID: 25450919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis.
    Nehnevajova E; Herzig R; Federer G; Erismann KH; SchwitzguƩbel JP
    Int J Phytoremediation; 2005; 7(4):337-49. PubMed ID: 16463545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulation Potential Cadmium and Lead by Sunflower (
    Niu Z; Li X; Mahamood M
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36901118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials.
    Shumaker KL; Begonia G
    Int J Environ Res Public Health; 2005 Aug; 2(2):293-8. PubMed ID: 16705830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cadmium accumulation, translocation, and assessment of eighteen
    Guo Y; Qiu C; Long S; Wang H; Wang Y
    Int J Phytoremediation; 2020; 22(5):490-496. PubMed ID: 31686526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytoremediation potential evaluation of three rhubarb species and comparative analysis of their rhizosphere characteristics in a Cd- and Pb-contaminated soil.
    Yang J; Huang Y; Zhao G; Li B; Qin X; Xu J; Li X
    Chemosphere; 2022 Jun; 296():134045. PubMed ID: 35183585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions.
    Jalali M; Imanifard A
    Int J Phytoremediation; 2021; 23(14):1525-1537. PubMed ID: 33945349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic impact of two autochthonous saprobic fungi (
    Nazir A; Sarfraz W; Allah D; Khalid N; Farid M; Shafiq M; Bareen FE; Rizvi ZF; Naeem N
    Int J Phytoremediation; 2023; 25(11):1488-1500. PubMed ID: 36633455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity.
    Shahabivand S; Parvaneh A; Aliloo AA
    Ecotoxicol Environ Saf; 2017 Nov; 145():496-502. PubMed ID: 28783599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use.
    Zhou J; Chen LH; Peng L; Luo S; Zeng QR
    Chemosphere; 2020 May; 247():125856. PubMed ID: 31951954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of
    Soltani-Gishini MF; Azizian A; Alemzadeh A; Shabani M; Hildebrand D
    Int J Phytoremediation; 2022; 24(11):1133-1140. PubMed ID: 34870525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preliminary study on Cd accumulation characteristics in
    Li X; Yang Y
    Plant Divers; 2020 Oct; 42(5):351-355. PubMed ID: 33134618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.