These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38644848)
1. Improving radiomic modeling for the identification of symptomatic carotid atherosclerotic plaques using deep learning-based 3D super-resolution CT angiography. Wang L; Guo T; Wang L; Yang W; Wang J; Nie J; Cui J; Jiang P; Li J; Zhang H Heliyon; 2024 Apr; 10(8):e29331. PubMed ID: 38644848 [TBL] [Abstract][Full Text] [Related]
2. Computed tomography angiography-based radiomics model for predicting carotid atherosclerotic plaque vulnerability. Shan D; Wang S; Wang J; Lu J; Ren J; Chen J; Wang D; Qi P Front Neurol; 2023; 14():1151326. PubMed ID: 37396779 [TBL] [Abstract][Full Text] [Related]
3. Machine learning-based identification of symptomatic carotid atherosclerotic plaques with dual-energy computed tomography angiography. Wang LJ; Zhai PQ; Xue LL; Shi CY; Zhang Q; Zhang H J Stroke Cerebrovasc Dis; 2023 Aug; 32(8):107209. PubMed ID: 37290153 [TBL] [Abstract][Full Text] [Related]
4. Computed tomography angiography-based radiomics model to identify high-risk carotid plaques. Chen C; Tang W; Chen Y; Xu W; Yu N; Liu C; Li Z; Tang Z; Zhang X Quant Imaging Med Surg; 2023 Sep; 13(9):6089-6104. PubMed ID: 37711840 [TBL] [Abstract][Full Text] [Related]
5. Radiomics Signatures of Carotid Plaque on Computed Tomography Angiography : An Approach to Identify Symptomatic Plaques. Shi J; Sun Y; Hou J; Li X; Fan J; Zhang L; Zhang R; You H; Wang Z; Zhang A; Zhang J; Jin Q; Zhao L; Yang B Clin Neuroradiol; 2023 Dec; 33(4):931-941. PubMed ID: 37195452 [TBL] [Abstract][Full Text] [Related]
6. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography. Nagayama Y; Emoto T; Kato Y; Kidoh M; Oda S; Sakabe D; Funama Y; Nakaura T; Hayashi H; Takada S; Uchimura R; Hatemura M; Tsujita K; Hirai T Eur Radiol; 2023 Dec; 33(12):8488-8500. PubMed ID: 37432405 [TBL] [Abstract][Full Text] [Related]
7. Deep-learning-based 3D super-resolution CT radiomics model: Predict the possibility of the micropapillary/solid component of lung adenocarcinoma. Xing X; Li L; Sun M; Yang J; Zhu X; Peng F; Du J; Feng Y Heliyon; 2024 Jul; 10(13):e34163. PubMed ID: 39071606 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical characteristics of isolated carotid atherosclerotic plaques assessed by ultrasonography. Li M; Li L; Wu W; Jiang Y; Zhang P Int Angiol; 2019 Dec; 38(6):443-450. PubMed ID: 31782278 [TBL] [Abstract][Full Text] [Related]
9. Identification of vulnerable carotid plaque with CT-based radiomics nomogram. Liu M; Chang N; Zhang S; Du Y; Zhang X; Ren W; Sun J; Bai J; Wang L; Zhang G Clin Radiol; 2023 Nov; 78(11):e856-e863. PubMed ID: 37633746 [TBL] [Abstract][Full Text] [Related]
10. Radiomics versus Conventional Assessment to Identify Symptomatic Participants at Carotid Computed Tomography Angiography. Dong Z; Zhou C; Li H; Shi J; Liu J; Liu Q; Su X; Zhang F; Cheng X; Lu G Cerebrovasc Dis; 2022; 51(5):647-654. PubMed ID: 35259744 [TBL] [Abstract][Full Text] [Related]
11. Deep-learning-based 3D super-resolution MRI radiomics model: superior predictive performance in preoperative T-staging of rectal cancer. Hou M; Zhou L; Sun J Eur Radiol; 2023 Jan; 33(1):1-10. PubMed ID: 35726100 [TBL] [Abstract][Full Text] [Related]
12. Using machine learning to predict carotid artery symptoms from CT angiography: A radiomics and deep learning approach. Le EPV; Wong MYZ; Rundo L; Tarkin JM; Evans NR; Weir-McCall JR; Chowdhury MM; Coughlin PA; Pavey H; Zaccagna F; Wall C; Sriranjan R; Corovic A; Huang Y; Warburton EA; Sala E; Roberts M; Schönlieb CB; Rudd JHF Eur J Radiol Open; 2024 Dec; 13():100594. PubMed ID: 39280120 [TBL] [Abstract][Full Text] [Related]
13. Generative adversarial network-based super-resolution of diffusion-weighted imaging: Application to tumour radiomics in breast cancer. Fan M; Liu Z; Xu M; Wang S; Zeng T; Gao X; Li L NMR Biomed; 2020 Aug; 33(8):e4345. PubMed ID: 32521567 [TBL] [Abstract][Full Text] [Related]
14. Automated Classification of Atherosclerotic Radiomics Features in Coronary Computed Tomography Angiography (CCTA). Yunus MM; Mohamed Yusof AK; Ab Rahman MZ; Koh XJ; Sabarudin A; Nohuddin PNE; Ng KH; Kechik MMA; Karim MKA Diagnostics (Basel); 2022 Jul; 12(7):. PubMed ID: 35885564 [TBL] [Abstract][Full Text] [Related]
15. A radiomics model based on aortic computed tomography angiography: the impact on predicting the prognosis of patients with aortic intramural hematoma (IMH). Ding Y; Zhang C; Wu W; Pu J; Zhao X; Zhang H; Zhao L; Schoenhagen P; Liu S; Ma X Quant Imaging Med Surg; 2023 Feb; 13(2):598-609. PubMed ID: 36819258 [TBL] [Abstract][Full Text] [Related]
16. Predicting transient ischemic attack risk in patients with mild carotid stenosis using machine learning and CT radiomics. Xia H; Yuan L; Zhao W; Zhang C; Zhao L; Hou J; Luan Y; Bi Y; Feng Y Front Neurol; 2023; 14():1105616. PubMed ID: 36846119 [TBL] [Abstract][Full Text] [Related]
17. Radiomics Analysis of Lymph Nodes with Esophageal Squamous Cell Carcinoma Based on Deep Learning. Chen L; Ouyang Y; Liu S; Lin J; Chen C; Zheng C; Lin J; Hu Z; Qiu M J Oncol; 2022; 2022():8534262. PubMed ID: 36147442 [TBL] [Abstract][Full Text] [Related]
18. Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography. Kolossváry M; Park J; Bang JI; Zhang J; Lee JM; Paeng JC; Merkely B; Narula J; Kubo T; Akasaka T; Koo BK; Maurovich-Horvat P Eur Heart J Cardiovasc Imaging; 2019 Nov; 20(11):1250-1258. PubMed ID: 30838375 [TBL] [Abstract][Full Text] [Related]
19. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning. Zhang R; Zhang Q; Ji A; Lv P; Zhang J; Fu C; Lin J Eur Radiol; 2021 May; 31(5):3116-3126. PubMed ID: 33068185 [TBL] [Abstract][Full Text] [Related]
20. Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis. Li XN; Yin WH; Sun Y; Kang H; Luo J; Chen K; Hou ZH; Gao Y; Ren XS; Yu YT; An YQ; Zhang Y; Wang HY; Lu B Eur Radiol; 2022 Jun; 32(6):4003-4013. PubMed ID: 35171348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]