These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway. Lei S; Li J; Yu J; Li F; Pan Y; Chen X; Ma C; Zhao W; Tang X Int J Oral Sci; 2023 Jan; 15(1):3. PubMed ID: 36631446 [TBL] [Abstract][Full Text] [Related]
24. Role for caveolin-mediated transcytosis in facilitating transport of large cargoes into the brain via ultrasound. Pandit R; Koh WK; Sullivan RKP; Palliyaguru T; Parton RG; Götz J J Control Release; 2020 Nov; 327():667-675. PubMed ID: 32918963 [TBL] [Abstract][Full Text] [Related]
25. Alzheimer's disease brain endothelial-like cells reveal differential drug transporter expression and modulation by potentially therapeutic focused ultrasound. Chaves JCS; Wasielewska JM; Cuní-López C; Rantanen LM; Lee S; Koistinaho J; White AR; Oikari LE Neurotherapeutics; 2024 Jan; 21(1):e00299. PubMed ID: 38241156 [TBL] [Abstract][Full Text] [Related]
26. Sphingolipids affect fibrinogen-induced caveolar transcytosis and cerebrovascular permeability. Muradashvili N; Khundmiri SJ; Tyagi R; Gartung A; Dean WL; Lee MJ; Lominadze D Am J Physiol Cell Physiol; 2014 Jul; 307(2):C169-79. PubMed ID: 24829496 [TBL] [Abstract][Full Text] [Related]
27. Influence of focused ultrasound on locoregional drug delivery to the brain: Potential implications for brain tumor therapy. Uribe Cardenas R; Laramee M; Ray I; Dahmane N; Souweidane M; Martin B J Control Release; 2023 Oct; 362():755-763. PubMed ID: 37659767 [TBL] [Abstract][Full Text] [Related]
28. Hypertension depresses but exercise training restores both Mfsd2a expression and blood-brain barrier function within PVN capillaries. Perego SM; Raquel HA; Candido VB; Masson GS; Martins MM; Ceroni A; Michelini LC Am J Physiol Regul Integr Comp Physiol; 2023 Sep; 325(3):R299-R307. PubMed ID: 37458379 [TBL] [Abstract][Full Text] [Related]
29. Wnt signaling regulates MFSD2A-dependent drug delivery through endothelial transcytosis in glioma. Xie Y; He L; Zhang Y; Huang H; Yang F; Chao M; Cao H; Wang J; Li Y; Zhang L; Xin L; Xiao B; Shi X; Zhang X; Tang J; Uhrbom L; Dimberg A; Wang L; Zhang L Neuro Oncol; 2023 Jun; 25(6):1073-1084. PubMed ID: 36591963 [TBL] [Abstract][Full Text] [Related]
30. Physical blood-brain barrier disruption induced by focused ultrasound does not overcome the transporter-mediated efflux of erlotinib. Goutal S; Gerstenmayer M; Auvity S; Caillé F; Mériaux S; Buvat I; Larrat B; Tournier N J Control Release; 2018 Dec; 292():210-220. PubMed ID: 30415015 [TBL] [Abstract][Full Text] [Related]
32. Probing Cerebral Metabolism with Hyperpolarized Hackett EP; Shah BR; Cheng B; LaGue E; Vemireddy V; Mendoza M; Bing C; Bachoo RM; Billingsley KL; Chopra R; Park JM ACS Chem Neurosci; 2021 Aug; 12(15):2820-2828. PubMed ID: 34291630 [TBL] [Abstract][Full Text] [Related]
33. Secondary effects on brain physiology caused by focused ultrasound-mediated disruption of the blood-brain barrier. Todd N; Angolano C; Ferran C; Devor A; Borsook D; McDannold N J Control Release; 2020 Aug; 324():450-459. PubMed ID: 32470359 [TBL] [Abstract][Full Text] [Related]
34. Transcytosis at the blood-brain barrier. Ayloo S; Gu C Curr Opin Neurobiol; 2019 Aug; 57():32-38. PubMed ID: 30708291 [TBL] [Abstract][Full Text] [Related]
35. Efficiency of drug delivery enhanced by acoustic pressure during blood-brain barrier disruption induced by focused ultrasound. Yang FY; Lee PY Int J Nanomedicine; 2012; 7():2573-82. PubMed ID: 22679368 [TBL] [Abstract][Full Text] [Related]
36. Both the Complexity of Tight Junctions and Endothelial Transcytosis Are Increased During BBB Postnatal Development in Rats. Li W; Zou J; Shang J; Gao C; Sun R; Liu R; Cao H; Wang Y; Zhang J Front Neurosci; 2022; 16():850857. PubMed ID: 35573303 [TBL] [Abstract][Full Text] [Related]
37. Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. Park EJ; Zhang YZ; Vykhodtseva N; McDannold N J Control Release; 2012 Nov; 163(3):277-84. PubMed ID: 23000189 [TBL] [Abstract][Full Text] [Related]
38. Imaging the impact of blood-brain barrier disruption induced by focused ultrasound on P-glycoprotein function. Goutal S; Novell A; Leterrier S; Breuil L; Selingue E; Gerstenmayer M; Marie S; Saubaméa B; Caillé F; Langer O; Truillet C; Larrat B; Tournier N J Control Release; 2023 Sep; 361():483-492. PubMed ID: 37562557 [TBL] [Abstract][Full Text] [Related]
39. Transcellular routes of blood-brain barrier disruption. Erickson MA; Banks WA Exp Biol Med (Maywood); 2022 May; 247(9):788-796. PubMed ID: 35243912 [TBL] [Abstract][Full Text] [Related]
40. Trained hypertensive rats exhibit decreased transcellular vesicle trafficking, increased tight junctions' density, restored blood-brain barrier permeability and normalized autonomic control of the circulation. Candido VB; Perego SM; Ceroni A; Metzger M; Colquhoun A; Michelini LC Front Physiol; 2023; 14():1069485. PubMed ID: 36909225 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]